A two-level graph partitioning problem arising in mobile wireless communications

In the k-partition problem (k-PP), one is given an edge-weighted undirected graph, and one must partition the node set into at most k subsets, in order to minimise (or maximise) the total weight of the edges that have their end-nodes in the same subset. Various hierarchical variants of this problem have been studied in the context of data mining. We consider a ‘two-level’ variant that arises in mobile wireless communications. We show that an exact algorithm based on intelligent preprocessing, cutting planes and symmetry-breaking is capable of solving small- and medium-size instances to proven optimality, and providing strong lower bounds for larger instances.

[1]  Adam N. Letchford On Disjunctive Cuts for Combinatorial Optimization , 2001, J. Comb. Optim..

[2]  Matteo Fischetti,et al.  {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..

[3]  Carlo Mannino,et al.  Models and solution techniques for frequency assignment problems , 2003, 4OR.

[4]  Moses Charikar,et al.  Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics , 2016, SODA.

[5]  A. Letchford,et al.  Projection Results for the k-Partition Problem , 2016 .

[6]  G. Szekeres,et al.  An inequality for the chromatic number of a graph , 1968 .

[7]  Marvin A. Carlson Editor , 2015 .

[8]  J. Hopcroft,et al.  Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.

[9]  Stephen B. Seidman,et al.  Network structure and minimum degree , 1983 .

[10]  Frits C. R. Spieksma,et al.  The clique partitioning problem: Facets and patching facets , 2001, Networks.

[11]  Miguel F. Anjos,et al.  Solving k -way Graph Partitioning Problems to Optimality: The Impact of Semidefinite Relaxations and the Bundle Method , 2013 .

[12]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[13]  David Eppstein,et al.  Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time , 2010, Exact Complexity of NP-hard Problems.

[14]  Yoshiko Wakabayashi,et al.  A cutting plane algorithm for a clustering problem , 1989, Math. Program..

[15]  Renata Sotirov,et al.  An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem , 2014, INFORMS J. Comput..

[16]  François Margot,et al.  Symmetry in Integer Linear Programming , 2010, 50 Years of Integer Programming.

[17]  Marc E. Pfetsch,et al.  Orbitopal fixing , 2011, Discret. Optim..

[18]  Andreas Eisenblätter,et al.  The Semidefinite Relaxation of the k -Partition Polytope Is Strong , 2002, IPCO.

[19]  George L. Nemhauser,et al.  Scheduling to Minimize Interaction Cost , 1966, Oper. Res..

[20]  Aurko Roy,et al.  Hierarchical Clustering via Spreading Metrics , 2016, NIPS.

[21]  J. Moon,et al.  On cliques in graphs , 1965 .

[22]  R. Pieters,et al.  Working Paper , 1994 .

[23]  Alexandre Pauchet,et al.  Polyhedral combinatorics of the K-partitioning problem with representative variables , 2016, Discret. Appl. Math..

[24]  Martin Grötschel,et al.  Clique-Web Facets for Multicut Polytopes , 1992, Math. Oper. Res..

[26]  M. R. Rao,et al.  Facets of the K-partition Polytope , 1995, Discret. Appl. Math..

[27]  Dorit S. Hochbaum,et al.  Why Should Biconnected Components be Identified First , 1993, Discret. Appl. Math..

[28]  Alan M. Frieze,et al.  Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.

[29]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[30]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[31]  M. R. Rao,et al.  The partition problem , 1993, Math. Program..

[32]  Adam N. Letchford,et al.  Projection results for the -partition problem , 2017, Discret. Optim..

[33]  Carlo Mannino A unified view in planning broadcasting networks , 2007 .

[34]  Martin Grötschel,et al.  Facets of the clique partitioning polytope , 1990, Math. Program..

[35]  Ralf Borndörfer,et al.  Set packing relaxations of some integer programs , 2000, Math. Program..

[36]  Sébastien Le Digabel,et al.  Computational study of valid inequalities for the maximum k-cut problem , 2016, Ann. Oper. Res..

[37]  Franz Rendl,et al.  Semidefinite relaxations for partitioning, assignment and ordering problems , 2012, 4OR.

[38]  Miguel F. Anjos,et al.  A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem , 2011, Ann. Oper. Res..

[39]  Peter Sanders,et al.  Engineering Multilevel Graph Partitioning Algorithms , 2010, ESA.

[40]  Rudolf Müller,et al.  Working Paper Transitive Packing : A i Unifying Concept in Optimization Combinatorial by A . , 2002 .

[41]  Sanjoy Dasgupta,et al.  A cost function for similarity-based hierarchical clustering , 2015, STOC.

[42]  Tang Yong,et al.  A Survey of Proximity Graphs in Wireless Networks , 2008 .

[43]  Panos M. Pardalos,et al.  Handbook of Optimization in Telecommunications , 2006 .

[44]  Martin Grötschel,et al.  Complete Descriptions of Small Multicut Polytopes , 1990, Applied Geometry And Discrete Mathematics.

[45]  Yong Tang,et al.  A Survey of Proximity Graphs in Wireless Networks , 2010 .

[46]  A. Eisenblätter Frequency Assignment in GSM Networks: Models, Heuristics, and Lower Bounds , 2001 .