A two-level graph partitioning problem arising in mobile wireless communications
暂无分享,去创建一个
[1] Adam N. Letchford. On Disjunctive Cuts for Combinatorial Optimization , 2001, J. Comb. Optim..
[2] Matteo Fischetti,et al. {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..
[3] Carlo Mannino,et al. Models and solution techniques for frequency assignment problems , 2003, 4OR.
[4] Moses Charikar,et al. Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics , 2016, SODA.
[5] A. Letchford,et al. Projection Results for the k-Partition Problem , 2016 .
[6] G. Szekeres,et al. An inequality for the chromatic number of a graph , 1968 .
[7] Marvin A. Carlson. Editor , 2015 .
[8] J. Hopcroft,et al. Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.
[9] Stephen B. Seidman,et al. Network structure and minimum degree , 1983 .
[10] Frits C. R. Spieksma,et al. The clique partitioning problem: Facets and patching facets , 2001, Networks.
[11] Miguel F. Anjos,et al. Solving k -way Graph Partitioning Problems to Optimality: The Impact of Semidefinite Relaxations and the Bundle Method , 2013 .
[12] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[13] David Eppstein,et al. Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time , 2010, Exact Complexity of NP-hard Problems.
[14] Yoshiko Wakabayashi,et al. A cutting plane algorithm for a clustering problem , 1989, Math. Program..
[15] Renata Sotirov,et al. An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem , 2014, INFORMS J. Comput..
[16] François Margot,et al. Symmetry in Integer Linear Programming , 2010, 50 Years of Integer Programming.
[17] Marc E. Pfetsch,et al. Orbitopal fixing , 2011, Discret. Optim..
[18] Andreas Eisenblätter,et al. The Semidefinite Relaxation of the k -Partition Polytope Is Strong , 2002, IPCO.
[19] George L. Nemhauser,et al. Scheduling to Minimize Interaction Cost , 1966, Oper. Res..
[20] Aurko Roy,et al. Hierarchical Clustering via Spreading Metrics , 2016, NIPS.
[21] J. Moon,et al. On cliques in graphs , 1965 .
[22] R. Pieters,et al. Working Paper , 1994 .
[23] Alexandre Pauchet,et al. Polyhedral combinatorics of the K-partitioning problem with representative variables , 2016, Discret. Appl. Math..
[24] Martin Grötschel,et al. Clique-Web Facets for Multicut Polytopes , 1992, Math. Oper. Res..
[26] M. R. Rao,et al. Facets of the K-partition Polytope , 1995, Discret. Appl. Math..
[27] Dorit S. Hochbaum,et al. Why Should Biconnected Components be Identified First , 1993, Discret. Appl. Math..
[28] Alan M. Frieze,et al. Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.
[29] Gábor Csárdi,et al. The igraph software package for complex network research , 2006 .
[30] C. Bron,et al. Algorithm 457: finding all cliques of an undirected graph , 1973 .
[31] M. R. Rao,et al. The partition problem , 1993, Math. Program..
[32] Adam N. Letchford,et al. Projection results for the -partition problem , 2017, Discret. Optim..
[33] Carlo Mannino. A unified view in planning broadcasting networks , 2007 .
[34] Martin Grötschel,et al. Facets of the clique partitioning polytope , 1990, Math. Program..
[35] Ralf Borndörfer,et al. Set packing relaxations of some integer programs , 2000, Math. Program..
[36] Sébastien Le Digabel,et al. Computational study of valid inequalities for the maximum k-cut problem , 2016, Ann. Oper. Res..
[37] Franz Rendl,et al. Semidefinite relaxations for partitioning, assignment and ordering problems , 2012, 4OR.
[38] Miguel F. Anjos,et al. A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem , 2011, Ann. Oper. Res..
[39] Peter Sanders,et al. Engineering Multilevel Graph Partitioning Algorithms , 2010, ESA.
[40] Rudolf Müller,et al. Working Paper Transitive Packing : A i Unifying Concept in Optimization Combinatorial by A . , 2002 .
[41] Sanjoy Dasgupta,et al. A cost function for similarity-based hierarchical clustering , 2015, STOC.
[42] Tang Yong,et al. A Survey of Proximity Graphs in Wireless Networks , 2008 .
[43] Panos M. Pardalos,et al. Handbook of Optimization in Telecommunications , 2006 .
[44] Martin Grötschel,et al. Complete Descriptions of Small Multicut Polytopes , 1990, Applied Geometry And Discrete Mathematics.
[45] Yong Tang,et al. A Survey of Proximity Graphs in Wireless Networks , 2010 .
[46] A. Eisenblätter. Frequency Assignment in GSM Networks: Models, Heuristics, and Lower Bounds , 2001 .