Isogeometric Analysis of Elastic Sheets Exhibiting Combined Bending and Stretching using Dynamic Relaxation

Shells are ubiquitous thin structures that can undergo large nonlinear elastic deformations while exhibiting combined modes of bending and stretching, and have profound modern applications. In this paper, we have proposed a new Isogeometric formulation, based on classical Koiter nonlinear shell theory, to study instability problems like wrinkling and buckling in thin shells. The use of NURBS-basis provides rotation-free, conforming, higher-order spatial continuity, such that curvatures and membrane strains can be computed directly from the interpolation of the position vectors of the control points. A pseudo, dissipative and discrete, dynamical system is constructed, and static equilibrium solutions are obtained by the method of dynamic relaxation (DR). A high-performance computing-based implementation of the DR is presented, and the proposed formulation is benchmarked against several existing numerical, and experimental results. The advantages of this formulation, over traditional finite element approaches, in assessing structural response of the shells are presented.

[1]  Shuo Yang,et al.  Numerical analysis of the LDG method for large deformations of prestrained plates , 2021, ArXiv.

[2]  P. G. Ciarlet,et al.  Mathematical Elasticity: Theory of Plates , 2021 .

[3]  Angelos Mantzaflaris,et al.  Stretch-Based Hyperelastic Material Formulations for Isogeometric Kirchhoff-Love Shells with Application to Wrinkling , 2020, Comput. Aided Des..

[4]  A. Nordmark,et al.  Geometrically nonlinear isogeometric analysis of a partly wrinkled membrane structure , 2020 .

[5]  B. Davidovitch,et al.  Birth and decay of tensional wrinkles in hyperelastic sheets. , 2019, Physical review. E.

[6]  C. Mardare Nonlinear Shell Models of Kirchhoff-Love Type: Existence Theorem and Comparison with Koiter’s Model , 2019, Acta Mathematicae Applicatae Sinica, English Series.

[7]  Hugo Verhelst,et al.  Modelling Wrinkling Behaviour of Large Floating Thin Offshore Structures: An application of Isogeometric Structural Analysis for Post-Buckling Analyses , 2019 .

[8]  P. Ciarlet,et al.  An existence theorem for a two-dimensional nonlinear shell model of Koiter’s type , 2018, Mathematical Models and Methods in Applied Sciences.

[9]  L. Mahadevan,et al.  Reprogrammable Braille on an elastic shell , 2018, Proceedings of the National Academy of Sciences.

[10]  G. Lombaert,et al.  On the equivalence of dynamic relaxation and the Newton‐Raphson method , 2018 .

[11]  Ricardo H. Nochetto,et al.  Modeling and simulation of thermally actuated bilayer plates , 2017, J. Comput. Phys..

[12]  C. Mardare,et al.  A nonlinear shell model of Koiter's type , 2018 .

[13]  Roger A. Sauer,et al.  A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries , 2017 .

[14]  Roger A. Sauer,et al.  A new shell formulation for graphene structures based on existing ab-initio data , 2016, ArXiv.

[15]  P. Ciarlet,et al.  A mathematical model of Koiter’s type for a nonlinearly elastic “almost spherical” shell , 2016 .

[16]  Francesco dell’Isola,et al.  Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence , 2016 .

[17]  R. Radovitzky,et al.  A discontinuous Galerkin method for nonlinear shear-flexible shells , 2016 .

[18]  Kent Persson,et al.  Form finding with dynamic relaxation and isogeometric membrane elements , 2016 .

[19]  Ricardo H. Nochetto,et al.  Bilayer Plates: Model Reduction, Γ‐Convergent Finite Element Approximation, and Discrete Gradient Flow , 2015, 1506.03335.

[20]  P. Ciarlet,et al.  Existence Theorem for a Nonlinear Elliptic Shell Model , 2015 .

[21]  Katia Bertoldi,et al.  Spatial resolution of wrinkle patterns in thin elastic sheets at finite strain , 2014 .

[22]  Jan Błachut,et al.  Experimental Perspective on the Buckling of Pressure Vessel Components , 2014 .

[23]  Fotis Sotiropoulos,et al.  Nonlinear rotation‐free three‐node shell finite element formulation , 2013 .

[24]  Qingdu Li,et al.  Wrinkling Behavior of Highly Stretched Rectangular Elastic Films via Parametric Global Bifurcation , 2013, J. Nonlinear Sci..

[25]  David J. Steigmann,et al.  Koiter’s Shell Theory from the Perspective of Three-dimensional Nonlinear Elasticity , 2013 .

[26]  Levi H. Dudte,et al.  Geometric mechanics of curved crease origami. , 2012, Physical review letters.

[27]  Mark W. Hilburger,et al.  Developing the Next Generation Shell Buckling Design Factors and Technologies , 2012 .

[28]  Les Johnson,et al.  Status of solar sail technology within NASA , 2011 .

[29]  Eliot Fried,et al.  Wrinkling of a Stretched Thin Sheet , 2011 .

[30]  Karol Miller,et al.  An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation , 2011, International journal for numerical methods in biomedical engineering.

[31]  Fu Xiaojin,et al.  Isogeometric Analysis Toward Integration of CAD and CAE , 2011 .

[32]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[33]  Lingyi A. Zheng,et al.  Wrinkling of Dielectric Elastomer Membranes , 2009 .

[34]  L. Mahadevan,et al.  Localized and extended deformations of elastic shells , 2008, Proceedings of the National Academy of Sciences.

[35]  P. G. Ciarlet,et al.  An Introduction to Shell Theory , 2008 .

[36]  Olivier Polit,et al.  C1 plate and shell finite elements for geometrically nonlinear analysis of multilayered structures , 2006 .

[37]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[38]  S. Pellegrino,et al.  Wrinkled membranes I: experiments , 2006 .

[39]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[40]  Sue Whitesides,et al.  Magnetic self-assembly of three-dimensional surfaces from planar sheets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Peter Wriggers,et al.  A triangular finite shell element based on a fully nonlinear shell formulation , 2003 .

[42]  L. Mahadevan,et al.  Geometry and physics of wrinkling. , 2003, Physical review letters.

[43]  Don R. Metzger,et al.  Adaptive damping for dynamic relaxation problems with non‐monotonic spectral response , 2003 .

[44]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[45]  G. Friesecke,et al.  Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence , 2003 .

[46]  L. Mahadevan,et al.  Thin films: Wrinkling of an elastic sheet under tension , 2002, Nature.

[47]  Boštjan Brank,et al.  Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation , 2002 .

[48]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[49]  Philippe G. Ciarlet,et al.  JUSTIFICATION OF A TWO-DIMENSIONAL NONLINEAR SHELL MODEL OF KOITER'S TYPE , 2001 .

[50]  M. Barnes,et al.  Form Finding and Analysis of Tension Structures by Dynamic Relaxation , 1999 .

[51]  Philippe G. Ciarlet,et al.  An Existence Theorem for Nonlinearly Elastic ‘Flexural’ Shells , 1998 .

[52]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[53]  Philippe G. Ciarlet,et al.  Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations , 1996 .

[54]  B. Miara,et al.  Asymptotic analysis of linearly elastic shells , 1996 .

[55]  A. Raoult,et al.  The membrane shell model in nonlinear elasticity: A variational asymptotic derivation , 1996 .

[56]  P. Trouvé,et al.  On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary shape , 1994 .

[57]  E. M. Haseganu,et al.  Analysis of partly wrinkled membranes by the method of dynamic relaxation , 1994 .

[58]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[59]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[60]  W. Flügge Theory of Shells , 1972 .

[61]  D. M. Brotton,et al.  Non‐linear structural analysis by dynamic relaxation , 1971 .

[62]  N. Cristescu,et al.  On dynamic relaxation , 1967 .

[63]  John W. Hutchinson,et al.  Dynamic buckling of imperfection-sensitive structures , 1966 .

[64]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.