Crystal Structure Prediction via Oblivious Local Search
暂无分享,去创建一个
Paul G. Spirakis | Argyrios Deligkas | Vladimir Gusev | Dmytro Antypov | Matthew J. Rosseinsky | Michail Theofilatos | P. Spirakis | V. Gusev | M. Rosseinsky | D. Antypov | Argyrios Deligkas | Michail Theofilatos | Dmytro Antypov
[1] P. Mandal,et al. Accelerated discovery of two crystal structure types in a complex inorganic phase field , 2017, Nature.
[2] C Collins,et al. The Flexible Unit Structure Engine (FUSE) for probe structure-based composition prediction. , 2018, Faraday discussions.
[3] Theo Siegrist,et al. Combining magnets and dielectrics: Crystal chemistry in the BaO-Fe2O3-TiO2 System. , 2003 .
[4] Yanchao Wang,et al. Crystal structure prediction via particle-swarm optimization , 2010 .
[5] J. Pannetier,et al. Prediction of crystal structures from crystal chemistry rules by simulated annealing , 1990, Nature.
[6] Dmitry Yu. Zubarev,et al. Global minimum structure searches via particle swarm optimization , 2007, J. Comput. Chem..
[7] A. Oganov,et al. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.
[8] Liping Yu,et al. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. , 2014, Nature chemistry.
[9] Terrell A. Vanderah,et al. Magnetic Dielectric Oxides: Subsolidus Phase Relations in the BaO:Fe2O3:TiO2System , 1996 .
[10] Ulli Englert,et al. Prediction of crystal structures , 1996 .
[11] Artem R. Oganov,et al. Structure prediction drives materials discovery , 2019, Nature Reviews Materials.
[12] Marco Buongiorno Nardelli,et al. The high-throughput highway to computational materials design. , 2013, Nature materials.
[13] J. C. Schön,et al. How can Databases assist with the Prediction of Chemical Compounds? , 2014, Zeitschrift fur anorganische und allgemeine Chemie.
[14] Chris J. Pickard. Real-space pairwise electrostatic summation in a uniform neutralizing background , 2018 .
[15] Mark E. Oxley,et al. Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number , 2001 .
[16] Ho,et al. Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.
[17] Chris J Pickard,et al. High-pressure phases of silane. , 2006, Physical review letters.
[18] J. Doye,et al. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.
[19] Nicola Nosengo,et al. Can artificial intelligence create the next wonder material? , 2016, Nature.
[20] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[21] C. Catlow,et al. Inorganic crystal structure prediction using simplified potentials and experimental unit cells: application to the polymorphs of titanium dioxide , 1993 .
[22] David C. Lonie,et al. XtalOpt: An open-source evolutionary algorithm for crystal structure prediction , 2011, Comput. Phys. Commun..
[23] Anubhav Jain,et al. Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.
[24] Julian D. Gale,et al. The General Utility Lattice Program (GULP) , 2003 .
[25] J. C. Schön,et al. First Step Towards Planning of Syntheses in Solid‐State Chemistry: Determination of Promising Structure Candidates by Global Optimization , 1996 .
[26] S. Goedecker. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.
[27] Igor Potapov,et al. On the Hardness of Energy Minimisation for Crystal Structure Prediction , 2020, SOFSEM.
[28] Chris J Pickard,et al. Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.
[29] R. Buckingham,et al. The Classical Equation of State of Gaseous Helium, Neon and Argon , 1938 .