Motion recovery by using stereo vision

The motion recovery for a class of movements in the space by using stereo vision is considered by observing at least three points in this paper. The considered motion equation can cover a wide class of practical movements in the space. The observability of this class of movement is clarified. The estimations of the motion parameters which are all time-varying are developed in the proposed algorithm based on the second method of Lyapunov. The assumptions about the perspective system are reasonable, and the convergence conditions are intuitive and have apparently physical interpretations. The proposed recursive algorithm requires minor a priori knowledge about the system and can alleviate the noises in the image data. Furthermore, the proposed algorithm is modified to deal with the occlusion phenomenon. Simulation results show the proposed algorithm is effective even in the presence of measurement noises.