Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm

We study the fixed-support Wasserstein barycenter problem (FS-WBP), which consists in computing the Wasserstein barycenter of $m$ discrete probability measures supported on a finite metric space of size $n$. We show first that the constraint matrix arising from the standard linear programming (LP) representation of the FS-WBP is \textit{not totally unimodular} when $m \geq 3$ and $n \geq 3$. This result resolves an open question pertaining to the relationship between the FS-WBP and the minimum-cost flow (MCF) problem since it proves that the FS-WBP in the standard LP form is not an MCF problem when $m \geq 3$ and $n \geq 3$. We also develop a provably fast \textit{deterministic} variant of the celebrated iterative Bregman projection (IBP) algorithm, named \textsc{FastIBP}, with a complexity bound of $\tilde{O}(mn^{7/3}\varepsilon^{-4/3})$, where $\varepsilon \in (0, 1)$ is the tolerance. This complexity bound is better than the best known complexity bound of $\tilde{O}(mn^2\varepsilon^{-2})$ for the IBP algorithm in terms of $\varepsilon$, and that of $\tilde{O}(mn^{5/2}\varepsilon^{-1})$ from other accelerated algorithms in terms of $n$. Finally, we conduct extensive experiments with both synthetic and real data and demonstrate the favorable performance of the \textsc{FastIBP} algorithm in practice.

[1]  A. Tamir,et al.  On totally unimodular matrices , 1976, Networks.

[2]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[3]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[4]  Fred B. Schneider,et al.  A Theory of Graphs , 1993 .

[5]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[6]  W. Gangbo,et al.  Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .

[7]  C. Villani Topics in Optimal Transportation , 2003 .

[8]  Alain Trouvé,et al.  Local Geometry of Deformable Templates , 2005, SIAM J. Math. Anal..

[9]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[10]  P. Chiappori,et al.  Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness , 2007 .

[11]  C. Villani Optimal Transport: Old and New , 2008 .

[12]  G. Carlier,et al.  Matching for teams , 2010 .

[13]  Alan J. Hoffman,et al.  Integral Boundary Points of Convex Polyhedra , 2010, 50 Years of Integer Programming.

[14]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[15]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[16]  Codina Cotar,et al.  Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.

[17]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[18]  G. Buttazzo,et al.  Optimal-transport formulation of electronic density-functional theory , 2012, 1205.4514.

[19]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[20]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[21]  Adam M. Oberman,et al.  NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS , 2014, 1411.3602.

[22]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[23]  Julien Rabin,et al.  Sliced and Radon Wasserstein Barycenters of Measures , 2014, Journal of Mathematical Imaging and Vision.

[24]  Probabilistic Fréchet means for time varying persistence diagrams , 2013, 1307.6530.

[25]  Peter Richtárik,et al.  Accelerated, Parallel, and Proximal Coordinate Descent , 2013, SIAM J. Optim..

[26]  Lin Xiao,et al.  An Accelerated Randomized Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization , 2015, SIAM J. Optim..

[27]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[28]  Gabriel Peyré,et al.  A Smoothed Dual Approach for Variational Wasserstein Problems , 2015, SIAM J. Imaging Sci..

[29]  Steffen Borgwardt,et al.  Discrete Wasserstein barycenters: optimal transport for discrete data , 2015, Mathematical Methods of Operations Research.

[30]  Gabriel Peyré,et al.  Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.

[31]  Dinh Q. Phung,et al.  Multilevel Clustering via Wasserstein Means , 2017, ICML.

[32]  Jason Altschuler,et al.  Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration , 2017, NIPS.

[33]  Yurii Nesterov,et al.  Efficiency of the Accelerated Coordinate Descent Method on Structured Optimization Problems , 2017, SIAM J. Optim..

[34]  Justin Solomon,et al.  Parallel Streaming Wasserstein Barycenters , 2017, NIPS.

[35]  James Zijun Wang,et al.  Fast Discrete Distribution Clustering Using Wasserstein Barycenter With Sparse Support , 2015, IEEE Transactions on Signal Processing.

[36]  Aaron Sidford,et al.  Towards Optimal Running Times for Optimal Transport , 2018, ArXiv.

[37]  David B. Dunson,et al.  Scalable Bayes via Barycenter in Wasserstein Space , 2015, J. Mach. Learn. Res..

[38]  Alexander Gasnikov,et al.  Computational Optimal Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn's Algorithm , 2018, ICML.

[39]  Justin Solomon,et al.  Stochastic Wasserstein Barycenters , 2018, ICML.

[40]  Angelia Nedic,et al.  Distributed Computation of Wasserstein Barycenters Over Networks , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[41]  Darina Dvinskikh,et al.  Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters , 2018, NeurIPS.

[42]  Steffen Borgwardt,et al.  Improved Linear Programs for Discrete Barycenters , 2018, INFORMS Journal on Optimization.

[43]  Gabriel Peyré,et al.  Semi-dual Regularized Optimal Transport , 2018, SIAM Rev..

[44]  Vahab S. Mirrokni,et al.  Accelerating Greedy Coordinate Descent Methods , 2018, ICML.

[45]  L. Rüschendorf,et al.  On the Computation of Wasserstein Barycenters , 2019, J. Multivar. Anal..

[46]  Kent Quanrud,et al.  Approximating optimal transport with linear programs , 2018, SOSA.

[47]  Makoto Yamada,et al.  On Scalable Variant of Wasserstein Barycenter , 2019, ArXiv.

[48]  Yinyu Ye,et al.  Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter Problem , 2019, NeurIPS.

[49]  Michael I. Jordan,et al.  On the Complexity of Approximating Multimarginal Optimal Transport , 2019, J. Mach. Learn. Res..

[50]  Bernhard Schmitzer,et al.  Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems , 2016, SIAM J. Sci. Comput..

[51]  Darina Dvinskikh,et al.  On the Complexity of Approximating Wasserstein Barycenters , 2019, ICML.

[52]  Michael I. Jordan,et al.  On the Efficiency of the Sinkhorn and Greenkhorn Algorithms and Their Acceleration for Optimal Transport , 2019 .

[53]  S. Guminov,et al.  Accelerated Alternating Minimization, Accelerated Sinkhorn's Algorithm and Accelerated Iterative Bregman Projections. , 2019 .

[54]  Kevin Tian,et al.  A Direct tilde{O}(1/epsilon) Iteration Parallel Algorithm for Optimal Transport , 2019, NeurIPS.

[55]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[56]  Darina Dvinskikh,et al.  On the Complexity of Approximating Wasserstein Barycenter , 2019, ArXiv.

[57]  Nathaniel Lahn,et al.  A Graph Theoretic Additive Approximation of Optimal Transport , 2019, NeurIPS.

[58]  Michael I. Jordan,et al.  On Efficient Optimal Transport: An Analysis of Greedy and Accelerated Mirror Descent Algorithms , 2019, ICML.

[59]  Steffen Borgwardt,et al.  On the computational complexity of finding a sparse Wasserstein barycenter , 2019, Journal of Combinatorial Optimization.

[60]  Lei Yang,et al.  A Fast Globally Linearly Convergent Algorithm for the Computation of Wasserstein Barycenters , 2018, J. Mach. Learn. Res..

[61]  Gabriel Peyré,et al.  Wasserstein Barycentric Coordinates: Histogram Regression Using Optimal Transport , 2021 .