Viscoelasticity of isotropically cross-linked actin networks.

Despite their importance for the proper function of living cells, the physical properties of cross-linked actin networks remain poorly understood as the occurrence of heterogeneities hamper a quantitative physical description. The isotropic homogeneously cross-linked actin network presented here enables us to quantitatively relate the network response to a single filament model by determining the dominating length scale. The frequency dependence of the linear response and nonuniversal form of the nonlinear response reveal the importance of cross-linker unbinding events.

[1]  Theo Odijk,et al.  The statistics and dynamics of confined or entangled stiff polymers , 1983 .

[2]  D A Weitz,et al.  Microrheology probes length scale dependent rheology. , 2006, Physical review letters.

[3]  A. Bausch,et al.  Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces. , 2006, Biophysical journal.

[4]  P. Janmey,et al.  Nonlinear elasticity in biological gels , 2004, Nature.

[5]  D A Weitz,et al.  Microrheology of entangled F-actin solutions. , 2003, Physical review letters.

[6]  E. Sackmann,et al.  Entanglement, Elasticity, and Viscous Relaxation of Actin Solutions , 1998 .

[7]  Steven B Marston,et al.  The rates of formation and dissociation of actin-myosin complexes. Effects of solvent, temperature, nucleotide binding and head-head interactions. , 1982, The Biochemical journal.

[8]  S. Ishiwata,et al.  Characterization of single actomyosin rigor bonds: load dependence of lifetime and mechanical properties. , 2000, Biophysical journal.

[9]  T van Dillen,et al.  Alternative explanation of stiffening in cross-linked semiflexible networks. , 2005, Physical review letters.

[10]  Andreas R. Bausch,et al.  A bottom-up approach to cell mechanics , 2006 .

[11]  R. Yasuda,et al.  Strength and lifetime of the bond between actin and skeletal muscle alpha-actinin studied with an optical trapping technique. , 1996, Biochimica et biophysica acta.

[12]  A. C. Maggs,et al.  Dynamics and rheology of actin solutions , 1996 .

[13]  D A Weitz,et al.  Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E. Sackmann,et al.  Temperature-induced sol-gel transition and microgel formation in alpha -actinin cross-linked actin networks: A rheological study. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Internal motility in stiffening actin-myosin networks. , 2003, Physical review letters.

[16]  P. Janmey,et al.  Elasticity of semiflexible biopolymer networks. , 1995, Physical review letters.

[17]  D A Weitz,et al.  Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Tanford Macromolecules , 1994, Nature.

[19]  William H Guilford,et al.  Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Bausch,et al.  Cytoskeletal polymer networks: The molecular structure of cross-linkers determines macroscopic properties , 2006, Proceedings of the National Academy of Sciences.

[21]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[22]  D H Wachsstock,et al.  Cross-linker dynamics determine the mechanical properties of actin gels. , 1994, Biophysical journal.

[23]  Andreas R. Bausch,et al.  Microstructure and viscoelasticity of confined semiflexible polymer networks , 2006 .

[24]  D A Weitz,et al.  Scaling of F-actin network rheology to probe single filament elasticity and dynamics. , 2004, Physical review letters.

[25]  Kazuhiko Kinosita,et al.  Unbinding force of a single motor molecule of muscle measured using optical tweezers , 1995, Nature.

[26]  Alex J Levine,et al.  Filamin cross-linked semiflexible networks: fragility under strain. , 2006, Physical review letters.

[27]  D. Weitz,et al.  Elastic Behavior of Cross-Linked and Bundled Actin Networks , 2004, Science.

[28]  D. Wirtz,et al.  Strain Hardening of Actin Filament Networks , 2000, The Journal of Biological Chemistry.

[29]  F. MacKintosh,et al.  Dynamic shear modulus of a semiflexible polymer network , 1998 .

[30]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[31]  Erwin Frey,et al.  Stiff polymers, foams, and fiber networks. , 2006, Physical review letters.