Convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces

Abstract In this paper, we discuss some properties of iterates generated by a strict pseudo-contraction or a finite family of strict pseudo-contractions in a real 2-uniformly smooth Banach space. The results presented in this paper are interesting extensions and improvements upon those known ones of Marino and Xu [G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 324 (2007) 336–349]. In order to get a strong convergence theorem, we modify the normal Mann’s iterative algorithm by using a suitable convex combination of a fixed vector and a sequence in C . This result extends a recent result of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51–60] both from nonexpansive mappings to λ -strict pseudo-contractions and from Hilbert spaces to 2-uniformly smooth Banach spaces.

[1]  Tomonari Suzuki Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals , 2005 .

[2]  Haiyun Zhou,et al.  Convergence theorems of fixed points for -strict pseudo-contractions in Hilbert spaces , 2008 .

[3]  S. Reich Weak convergence theorems for nonexpansive mappings in Banach spaces , 1979 .

[4]  S. Reich Strong convergence theorems for resolvents of accretive operators in Banach spaces , 1980 .

[5]  Ronald E. Bruck Nonexpansive projections on subsets of Banach spaces. , 1973 .

[6]  Hong-Kun Xu Inequalities in Banach spaces with applications , 1991 .

[7]  Y. Cho,et al.  Nonexpansive Mappings and Iterative Methods in Uniformly Convex Banach Spaces , 2002 .

[8]  F. Browder,et al.  Construction of fixed points of nonlinear mappings in Hilbert space , 1967 .

[9]  C. E. Chidume,et al.  An example on the Mann iteration method for Lipschitz pseudocontractions , 2001 .

[10]  Hong-Kun Xu,et al.  Strong convergence of modified Mann iterations , 2005 .

[11]  Haiyun Zhou,et al.  CONVERGENCE THEOREMS OF COMMON FIXED POINTS FOR A FINITE FAMILY OF LIPSCHITZ PSEUDOCONTRACTIONS IN BANACH SPACES , 2008 .

[12]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[13]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[14]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[15]  F. Browder,et al.  FIXED-POINT THEOREMS FOR NONCOMPACT MAPPINGS IN HILBERT SPACE. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Lishan Liu,et al.  Ishikawa and Mann Iterative Process with Errors for Nonlinear Strongly Accretive Mappings in Banach Spaces , 1995 .

[17]  P. Lions Approximation de Points Fixes de Contractions , 1977 .

[18]  W. Takahashi,et al.  Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , 2003 .

[19]  Giuseppe Marino,et al.  WEAK AND STRONG CONVERGENCE THEOREMS FOR STRICT PSEUDO-CONTRACTIONS IN HILBERT SPACES , 2007 .

[20]  Felix E. Browder,et al.  Convergence of approximants to fixed points of nonexpansive nonlinear mappings in banach spaces , 1967 .

[21]  Jean-Pierre Gossez,et al.  Some geometric properties related to the fixed point theory for nonexpansive mappings. , 1972 .

[22]  Hong-Kun Xu,et al.  Fixed point iteration processes for asymptotically nonexpansive mappings , 1994 .

[23]  Klaus Deimling,et al.  Zeros of accretive operators , 1974 .

[24]  Simeon Reich,et al.  Asymptotic behavior of contractions in Banach spaces , 1973 .

[25]  R. Wittmann Approximation of fixed points of nonexpansive mappings , 1992 .

[26]  Haiyun Zhou Non–expansive Mappings and Iterative Methods in Uniformly Convex Banach Spaces , 2004 .

[27]  B. Rhoades,et al.  Fixed point iterations using infinite matrices , 1974 .