Analysing and Computing Turbulent Flows Using Wavelets

These lecture notes are a review on wavelet techniques for analyzing and computing fully-developed turbulent flows, which correspond to the regime where nonlinear instabilities are dominant. The wavelet-based techniques we have been developing during the last decade are explained and the main results are presented. After introducing the continuous and discrete wavelet transforms we present classical and wavelet-based statistical diagnostics to study turbulent flows. We then present wavelet methods for extracting coherent vortices in two- and three-dimensional turbulent flows. Afterwards we present an adaptive wavelet solver for the two-dimensional Navier—Stokes equations and apply it to compute a time-developing turbulent mixing layer. Finally we draw some conclusions and present some perspectives for turbulence modelling.

[1]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[2]  Jochen Fröhlich,et al.  An Adaptive Wavelet-Vaguelette Algorithm for the Solution of PDEs , 1997 .

[3]  Jochen Fröhlich,et al.  An adaptive two-dimensional wavelet-vaguelette algorithm for the computation of flame balls , 1999 .

[4]  Chin-Hoh Moeng,et al.  LARGE EDDY SIMULATION , 2002 .

[5]  James C. McWilliams,et al.  Symmetric vortex merger in two dimensions: causes and conditions , 1988, Journal of Fluid Mechanics.

[6]  Jacques Liandrat,et al.  Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation , 1990 .

[7]  P. Dimotakis,et al.  Turbulence, fractals, and mixing , 1999 .

[8]  D. Waugh,et al.  Quantification of the inelastic interaction of unequal vortices in two‐dimensional vortex dynamics , 1992 .

[9]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[10]  Alexandre J. Chorin,et al.  Vorticity and turbulence , 1994 .

[11]  Kai Schneider,et al.  Coherent Vortex Simulation (CVS), A Semi-Deterministic Turbulence Model Using Wavelets , 2001 .

[12]  Robert D. Moser,et al.  Direct Simulation of a Self-Similar Turbulent Mixing Layer , 1994 .

[13]  D. Carati,et al.  Large-eddy simulation , 2000 .

[14]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[15]  Kai Schneider,et al.  Wavelet approach for modelling and computing turbulence , 1998 .

[16]  A. Kerstein,et al.  Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence , 1987 .

[17]  H. K. Moffatt Topological Fluid Mechanics , 1990 .

[18]  A. S. Monin,et al.  Statistical Fluid Mechanics, Vol. II , 1976 .

[19]  Kai Schneider,et al.  Wavelets in Physics: Turbulence analysis, modelling and computing using wavelets , 1999 .

[20]  C. Meneveau Analysis of turbulence in the orthonormal wavelet representation , 1991, Journal of Fluid Mechanics.

[21]  S. Mallat A wavelet tour of signal processing , 1998 .

[22]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[23]  Marie Farge,et al.  Improved predictability of two-dimensional turbulent flows using wavelet packet compression , 1992 .

[24]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[25]  Kai Schneider,et al.  Coherent Structure Eduction in Wavelet-Forced Two-Dimensional Turbulent Flows , 1998 .

[26]  Andrew G. Glen,et al.  APPL , 2001 .

[27]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[28]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[29]  Jochen Fröhlich,et al.  Numerical Simulation of Decaying Turbulence in an Adaptive Wavelet Basis , 1996 .

[30]  M. Farge,et al.  Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets. , 2001, Physical review letters.

[31]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .

[32]  C. Basdevant,et al.  Wavelet spectra compared to Fourier spectra , 1995 .

[33]  Kai Schneider,et al.  Numerical simulation of a mixing layer in an adaptive wavelet basis , 2000 .

[34]  M. Farge,et al.  Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .

[35]  Valérie Perrier,et al.  Wavelet analysis of 2D turbulent fields , 1994 .

[36]  Marie Farge,et al.  Continuous wavelet analysis of coherent structures , 1990 .

[37]  Kai Schneider,et al.  Comparison of an Adaptive Wavelet Method and Nonlinearly Filtered Pseudospectral Methods for Two-Dimensional Turbulence , 1997 .

[38]  J. Fröhlich,et al.  Computation of decaying turbulence in an adaptive wavelet basis , 1999 .

[39]  P. Tchamitchian,et al.  Regularite locale de la fonction “non-differentiable” de Riemann , 1990 .

[40]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Marie Farge,et al.  Vorticity filaments in two-dimensional turbulence: creation, stability and effect , 1997, Journal of Fluid Mechanics.

[43]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[44]  R. Murenzi Wavelet Transforms Associated to the n-Dimensional Euclidean Group with Dilations: Signal in More Than One Dimension , 1990 .

[45]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[46]  A. Vincent,et al.  The dynamics of vorticity tubes in homogeneous turbulence , 1994, Journal of Fluid Mechanics.