Green coupling agent for agro‐waste based thermoplastic composites

The present work describes the use of agricultural by-product of the cocoa pod husk (CPH) as filler in the polypropylene composites. Besides, a green coupling agent (GCA) was developed from the coconut oil for filler modification. The primary objective of using GCA on CPH is to enhance the interfacial adhesion as improved stress transferability in the composites. The overall tensile properties, water absorption, thermal stability, and crystallinity of the composites are significantly improved by the occurrence of GCA. The fracture micrographs via the scanning electron microscopy shows homogeneous distribution of modified CPH particles and better interfacial bonding with matrix which leads to considerable improvement in the properties of the composites. The performance of GCA was comparable with the maleic anhydride grafted polypropylene and silane coupling agent. POLYM. COMPOS., 2016. © 2016 Society of Plastics Engineers

[1]  K. Chun,et al.  Agrowaste-based composites from cocoa pod husk and polypropylene , 2016 .

[2]  S. Husseinsyah,et al.  Effect of filler loading and coconut oil coupling agent on properties of low‐density polyethylene and palm kernel shell eco‐composites , 2016 .

[3]  K. Chun,et al.  Utilization of cocoa pod husk as filler in polypropylene biocomposites , 2015 .

[4]  P. Chindaprasirt,et al.  Properties of wood flour/expanded polystyrene waste composites modified with diammonium phosphate flame retardant , 2015 .

[5]  H. Salmah,et al.  Rheological and thermal properties of palm kernel shell–filled low-density polyethylene composites with acrylic acid , 2013 .

[6]  K. Chun,et al.  Properties of Coconut Shell Powder-Filled Polylactic Acid Ecocomposites: Effect of Maleic Acid , 2013 .

[7]  N. Ayrilmis,et al.  Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongata wood , 2013 .

[8]  S. Husseinsyah,et al.  Mechanical, morphological and thermal properties of chitosan filled polypropylene composites: The effect of binary modifying agents , 2013 .

[9]  H. Salmah,et al.  Properties of low-density polyethylene/palm kernel shell composites: Effect of polyethylene co-acrylic acid , 2013 .

[10]  K. Chun,et al.  Characterization and Properties of Recycled Polypropylene/Coconut Shell Powder Composites: Effect of Sodium Dodecyl Sulfate Modification , 2013 .

[11]  R. Teófilo,et al.  Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid , 2012 .

[12]  Hao Wang,et al.  Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview , 2012 .

[13]  J. Qiu,et al.  The interfacial modification of rice straw fiber reinforced poly(butylene succinate) composites: Effect of aminosilane with different alkoxy groups , 2012 .

[14]  K. Chun,et al.  Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent , 2012, Journal of Polymer Research.

[15]  Mochamad Syamsiro,et al.  A preliminary study on use of cocoa pod husk as a renewable source of energy in Indonesia , 2012 .

[16]  R. D. Amboni,et al.  Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins , 2011 .

[17]  Yeng-Fong Shih,et al.  Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites , 2011 .

[18]  A. A. Salema,et al.  A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials , 2010 .

[19]  C. Hill,et al.  Silane coupling agents used for natural fiber/polymer composites: A review , 2010 .

[20]  Lívia Dányádi,et al.  Effect of various surface modifications of wood flour on the properties of PP/wood composites , 2010 .

[21]  Rakesh Kumar,et al.  Studies on Water Absorption of Bamboo-Polyester Composites: Effect of Silane Treatment of Mercerized Bamboo , 2009 .

[22]  N. Islam,et al.  Physico-mechanical Properties of Maleic Acid Post Treated Jute Fiber Reinforced Polypropylene Composites , 2009 .

[23]  Lívia Dányádi,et al.  Wood flour filled PP composites: Compatibilization and adhesion , 2007 .

[24]  H. Khalil,et al.  Conventional agro-composites from chemically modified fibres , 2007 .

[25]  J. Móczó,et al.  Wood flour filled polypropylene composites : Interfacial adhesion and micromechanical deformations , 2007 .

[26]  Hyunyong Kim,et al.  Thermal properties of bio flour-filled polypropylene bio-composites with different pozzolan contents , 2007 .

[27]  M. Sain,et al.  Injection Molded Wheat Straw and Corn Stem Filled Polypropylene Composites , 2006 .

[28]  I. Mondragon,et al.  Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: Effect of treatments , 2006 .

[29]  Hanafi Ismail,et al.  Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites , 2002 .

[30]  Z. Ishak,et al.  The Effect of Chemical Modification of Rice Husk with Glycidyl Methacrylate on the Mechanical and Physical Properties of Rice Husk-Polystyrene Composites , 2000 .

[31]  A. Błędzki,et al.  Thermoplastics Reinforced with Wood Fillers: A Literature Review , 1998 .

[32]  Sabu Thomas,et al.  Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre , 1998 .

[33]  B. Wilson,et al.  Chemical composition of cocoa pod husk and its effect on growth and food efficiency in broiler chicks , 1991 .

[34]  B. Pukánszky Influence of interface interaction on the ultimate tensile properties of polymer composites , 1990 .

[35]  B. Kokta,et al.  Compounding of cellulose fibers with polypropylene: Effect of fiber treatment on dispersion in the polymer matirx , 1989 .

[36]  N. Sriskandarajah,et al.  Utilization of agricultural wastes in papua new guinea , 1987 .