Co@NH2-MIL-125(Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H2 production

We present a synthetic strategy for the efficient encapsulation of a derivative of a well-defined cobaloxime proton reduction catalyst within a photoresponsive metal–organic framework (NH2-MIL-125(Ti)). The resulting hybrid system Co@MOF is demonstrated to be a robust heterogeneous composite material. Furthermore, Co@MOF is an efficient and fully recyclable noble metal-free catalyst system for light-driven hydrogen evolution from water under visible light illumination.

[1]  Luca Boarino,et al.  Monolithic cells for solar fuels. , 2014, Chemical Society reviews.

[2]  A. Mohamed,et al.  Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane , 2014, Nano Research.

[3]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[4]  Wenbin Lin,et al.  Metal-organic frameworks for artificial photosynthesis and photocatalysis. , 2014, Chemical Society reviews.

[5]  S. Pillai,et al.  New Insights into the Mechanism of Visible Light Photocatalysis. , 2014, The journal of physical chemistry letters.

[6]  Jiaguo Yu,et al.  Ternary NiS/ZnxCd1‐xS/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H2‐Production Activity , 2014 .

[7]  M. Krivec,et al.  The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. , 2014, Physical chemistry chemical physics : PCCP.

[8]  Wei Xiao,et al.  Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets. , 2014, Journal of the American Chemical Society.

[9]  F. Kapteijn,et al.  Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges , 2014 .

[10]  R. Thummel,et al.  Visible light-driven hydrogen evolution from water catalyzed by a molecular cobalt complex. , 2014, Journal of the American Chemical Society.

[11]  A. Mohamed,et al.  Facet-dependent photocatalytic properties of TiO(2) -based composites for energy conversion and environmental remediation. , 2014, ChemSusChem.

[12]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[13]  Aron Walsh,et al.  Electronic Chemical Potentials of Porous Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[14]  J. Niklas,et al.  Detection of a charge-separated catalyst precursor state in a linked photosensitizer-catalyst assembly. , 2013, Physical chemistry chemical physics : PCCP.

[15]  M. Field,et al.  A computational study of the mechanism of hydrogen evolution by cobalt(diimine-dioxime) catalysts. , 2013, Chemistry.

[16]  Freek Kapteijn,et al.  Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal–organic frameworks , 2013 .

[17]  C. Janiak,et al.  Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. , 2013, Dalton transactions.

[18]  Freek Kapteijn,et al.  Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. , 2013, Chemical communications.

[19]  Lin Yang,et al.  Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. , 2013, Chemistry.

[20]  Seth M. Cohen,et al.  Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal–Organic Framework , 2013, Journal of the American Chemical Society.

[21]  C. Serre,et al.  A robust amino-functionalized titanium(iv) based MOF for improved separation of acid gases. , 2013, Chemical communications.

[22]  Cheng Wang,et al.  Metal-organic frameworks as a tunable platform for designing functional molecular materials. , 2013, Journal of the American Chemical Society.

[23]  Aron Walsh,et al.  Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. , 2013, Journal of the American Chemical Society.

[24]  Y. Horiuchi,et al.  Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal–organic framework photocatalyst , 2013 .

[25]  Hee-Young Kim,et al.  Adsorption/catalytic properties of MIL-125 and NH2-MIL-125 , 2013 .

[26]  E. Reisner,et al.  Immobilization of a molecular cobaloxime catalyst for hydrogen evolution on a mesoporous metal oxide electrode. , 2012, Angewandte Chemie.

[27]  J. Durrant,et al.  Electron transfer in dye-sensitised semiconductors modified with molecular cobalt catalysts: photoreduction of aqueous protons. , 2012, Chemistry.

[28]  Cheng Wang,et al.  Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. , 2012, Journal of the American Chemical Society.

[29]  H. García,et al.  Evidence of photoinduced charge separation in the metal-organic framework MIL-125(Ti)-NH2. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .

[31]  Yangen Zhou,et al.  Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. , 2012, Chemical communications.

[32]  Pingwu Du,et al.  Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. , 2012, Journal of the American Chemical Society.

[33]  Masakazu Saito,et al.  Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework , 2012 .

[34]  Patrick L. Holland,et al.  Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions , 2012, Proceedings of the National Academy of Sciences.

[35]  Freek Kapteijn,et al.  Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives , 2012 .

[36]  Cheng Wang,et al.  Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. , 2012, Journal of the American Chemical Society.

[37]  J. Niklas,et al.  The hydrogen catalyst cobaloxime: a multifrequency EPR and DFT study of cobaloxime's electronic structure. , 2012, The journal of physical chemistry. B.

[38]  Pingwu Du,et al.  Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges , 2012 .

[39]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[40]  M. Fontecave,et al.  Splitting water with cobalt. , 2011, Angewandte Chemie.

[41]  G. Olah,et al.  Anthropogenic chemical carbon cycle for a sustainable future. , 2011, Journal of the American Chemical Society.

[42]  Freek Kapteijn,et al.  Unraveling the Optoelectronic and Photochemical Behavior of Zn4O-Based Metal Organic Frameworks , 2011 .

[43]  E. Reisner,et al.  Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. , 2011, Chemical communications.

[44]  Louise A. Berben,et al.  Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces. , 2010, Chemical communications.

[45]  M. Fontecave,et al.  Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages , 2009, Proceedings of the National Academy of Sciences.

[46]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[47]  Gerard P M van Klink,et al.  Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. , 2008, ChemSusChem.

[48]  Tsuyoshi Takata,et al.  Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light , 2008 .

[49]  B. Ferrer,et al.  Semiconductor behavior of a metal-organic framework (MOF). , 2007, Chemistry.

[50]  H. García,et al.  Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors , 2007 .

[51]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[52]  K. Lillerud,et al.  Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. , 2004, Chemical communications.

[53]  M. Berrettoni,et al.  X-ray absorption spectroscopy study on the electrochemical reduction of Co((DO)(DOH)pn)Br2 , 2000 .

[54]  O. Brede,et al.  Investigation of the Photoreduction of Anthraquinonedisulfonic Acid by Triethylamine with Fourier Transform Electron Spin Resonance , 1997 .

[55]  W. Lubitz,et al.  EPR Characterisation of Bis(dimethylglyoximato)-Cobalt(II) Complexes and Their Oxygen Adducts Synthesised in an X-Zeolite Matrix , 1987 .

[56]  A. Wesełucha-Birczyńska,et al.  EPR spectra of low-symmetry tetrahedral high-spin cobalt(II) in a cinchoninium tetrachlorocobaltate(II) dihydrate single crystal , 1985 .

[57]  I. Bertini,et al.  The epr spectra of the inhibitor derivatives of cobalt carbonic anhydrase. , 1981, Journal of inorganic biochemistry.

[58]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[59]  G. Costa,et al.  Vitamin b12 model compounds - cobalt chelates of bis(diacetylmonoxime -imino)propane 1–3 , 1969 .

[60]  E. Uhlig,et al.  Untersuchungen an Oximkomplexen. III. Nickelchelate des Bis‐(diacetylmonoxim‐imino)‐propans‐1,3 und des Bis‐(diacetylmonoxim‐imino)‐äthans‐1,2 , 1966 .