Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms

[1]  S. Foitzik,et al.  A Role of Histone Acetylation in the Regulation of Circadian Rhythm in Ants , 2020, iScience.

[2]  C. Lively,et al.  The evolutionary ecology of circadian rhythms in infection , 2019, Nature Ecology & Evolution.

[3]  P. Preiser,et al.  Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development , 2019, Nature Microbiology.

[4]  S. Ralph,et al.  Alternative Splicing in Apicomplexan Parasites , 2019, mBio.

[5]  A. Pain,et al.  A fast and cost-effective microsampling protocol incorporating reduced animal usage for time-series transcriptomics in rodent malaria parasites , 2018, Malaria Journal.

[6]  S. E. Reece,et al.  Malaria Makes the Most of Mealtimes. , 2018, Cell host & microbe.

[7]  R. Coimbra,et al.  Daily Rhythms of TNFα Expression and Food Intake Regulate Synchrony of Plasmodium Stages with the Host Circadian Cycle. , 2018, Cell host & microbe.

[8]  A. Pain,et al.  Timing of host feeding drives rhythms in parasite replication , 2017, bioRxiv.

[9]  S. E. Reece,et al.  The Life and Times of Parasites: Rhythms in Strategies for Within-host Survival and Between-host Transmission , 2017, Journal of biological rhythms.

[10]  A. Holder,et al.  Generating conditional gene knockouts in Plasmodium – a toolkit to produce stable DiCre recombinase-expressing parasite lines using CRISPR/Cas9 , 2017, Scientific Reports.

[11]  J. Takahashi,et al.  Trypanosoma brucei metabolism is under circadian control , 2017, Nature Microbiology.

[12]  Peter R. Preiser,et al.  Integrated analysis of the Plasmodium species transcriptome , 2016, EBioMedicine.

[13]  Gang Wu,et al.  MetaCycle: an integrated R package to evaluate periodicity in large scale data , 2016, bioRxiv.

[14]  G. Tseng,et al.  Effects of aging on circadian patterns of gene expression in the human prefrontal cortex , 2015, Proceedings of the National Academy of Sciences.

[15]  M. Sakaguchi,et al.  Isolation of invasive Plasmodium yoelii merozoites with a long half-life to evaluate invasion dynamics and potential invasion inhibitors. , 2015, Molecular and biochemical parasitology.

[16]  A. B. Reddy,et al.  Circadian redox oscillations and metabolism , 2015, Trends in Endocrinology & Metabolism.

[17]  Stuart A. Ralph,et al.  A serine–arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii , 2015, Nucleic acids research.

[18]  D. Kyle,et al.  Artemisinin-Resistant Plasmodium falciparum Parasites Exhibit Altered Patterns of Development in Infected Erythrocytes , 2015, Antimicrobial Agents and Chemotherapy.

[19]  D. Kwiatkowski,et al.  Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance , 2015, Science.

[20]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[21]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[22]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[23]  M. Young,et al.  Circadian regulation of metabolism. , 2014, The Journal of endocrinology.

[24]  Peter Krusche,et al.  Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle , 2014, Proceedings of the National Academy of Sciences.

[25]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[26]  Carla S. Möller-Levet,et al.  Mistimed sleep disrupts circadian regulation of the human transcriptome , 2014, Proceedings of the National Academy of Sciences.

[27]  P. Sassone-Corsi,et al.  The circadian clock and cell cycle: interconnected biological circuits. , 2013, Current opinion in cell biology.

[28]  R. Allada,et al.  Emerging roles for post-transcriptional regulation in circadian clocks , 2013, Nature Neuroscience.

[29]  S. E. Reece,et al.  Erratum to: disrupting rhythms in Plasmodium chabaudi: costs accrue quickly and independently of how infections are initiated , 2013, Malaria Journal.

[30]  S. E. Reece,et al.  Disrupting rhythms in Plasmodium chabaudi: costs accrue quickly and independently of how infections are initiated , 2013, Malaria Journal.

[31]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[32]  Peter Krusche,et al.  Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing , 2013, Proceedings of the National Academy of Sciences.

[33]  F. Naef,et al.  The Circadian Clock Coordinates Ribosome Biogenesis , 2013, PLoS biology.

[34]  Steven A. Brown,et al.  NONO couples the circadian clock to the cell cycle , 2012, Proceedings of the National Academy of Sciences.

[35]  Rossana Henriques,et al.  Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms. , 2012, Plant & cell physiology.

[36]  J. Takahashi,et al.  Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals , 2012, Science.

[37]  Chung-Mo Park,et al.  CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis , 2012, Plant signaling & behavior.

[38]  Nicholas J. McGlincy,et al.  Regulation of alternative splicing by the circadian clock and food related cues , 2012, Genome Biology.

[39]  Andrew J. Millar,et al.  Peroxiredoxins are conserved markers of circadian rhythms , 2012, Nature.

[40]  W. Huber,et al.  Detecting differential usage of exons from RNA-seq data , 2012, Genome research.

[41]  John W. S. Brown,et al.  Alternative Splicing Mediates Responses of the Arabidopsis Circadian Clock to Temperature Changes[W] , 2012, Plant Cell.

[42]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[43]  Bruce Russell,et al.  Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription , 2011, BMC Genomics.

[44]  C. Will,et al.  Spliceosome structure and function. , 2011, Cold Spring Harbor perspectives in biology.

[45]  Petra Schneider,et al.  Fitness costs of disrupting circadian rhythms in malaria parasites , 2011, Proceedings of the Royal Society B: Biological Sciences.

[46]  Andrew J. Millar,et al.  Circadian rhythms persist without transcription in a eukaryote , 2010, Nature.

[47]  Karl Kornacker,et al.  JTK_CYCLE: An Efficient Nonparametric Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets , 2010, Journal of biological rhythms.

[48]  Zhen Su,et al.  Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation , 2010, Bioinform..

[49]  Qiang Wang,et al.  Elevated ATPase Activity of KaiC Applies a Circadian Checkpoint on Cell Division in Synechococcus elongatus , 2010, Cell.

[50]  B. Malnic,et al.  Genome-Wide Detection of Serpentine Receptor-Like Proteins in Malaria Parasites , 2008, PloS one.

[51]  Robert Gentleman,et al.  Using GOstats to test gene lists for GO term association , 2007, Bioinform..

[52]  G. Eichele,et al.  Transcriptional Profiling in the Adrenal Gland Reveals Circadian Regulation of Hormone Biosynthesis Genes and Nucleosome Assembly Genes , 2006, Journal of biological rhythms.

[53]  M. Brunner,et al.  Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. , 2006, Genes & development.

[54]  J. Dunlap,et al.  Temperature-modulated alternative splicing and promoter use in the Circadian clock gene frequency. , 2005, Molecular biology of the cell.

[55]  Masami Ikeda,et al.  Proteome-wide classification and identification of mammalian-type GPCRs by binary topology pattern , 2004, Comput. Biol. Chem..

[56]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[57]  Melissa S Jurica,et al.  Pre-mRNA splicing: awash in a sea of proteins. , 2003, Molecular cell.

[58]  Steven M. Reppert,et al.  Rhythmic histone acetylation underlies transcription in the mammalian circadian clock , 2003, Nature.

[59]  G. Mcallister,et al.  Orphan G-protein-coupled receptors and natural ligand discovery. , 2001, Trends in pharmacological sciences.

[60]  B. O'dowd,et al.  Orphan G protein-coupled receptors in the CNS. , 2001, Current opinion in pharmacology.

[61]  S. Firestein,et al.  Neurobiology: The good taste of genomics , 2000, Nature.

[62]  K Nasmyth,et al.  Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. , 1999, Genes & development.

[63]  S. Elledge,et al.  Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. , 1999, Science.

[64]  S. Elledge,et al.  Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. , 1999, Science.

[65]  Y. Xiong,et al.  ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. , 1999, Molecular cell.

[66]  Paul E. Hardin,et al.  Two Alternatively Spliced Transcripts from the Drosophila period Gene Rescue Rhythms Having Different Molecular and Behavioral Characteristics , 1998, Molecular and Cellular Biology.

[67]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[68]  C. Janse,et al.  High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei , 2006, Nature Protocols.

[69]  A. Coutinho,et al.  Isotypic pattern of the polyclonal B cell response during primary infection by Plasmodium chabaudi and in immune‐protected mice , 1987, European journal of immunology.