Navigating Central Path with Electrical Flows: From Flows to Matchings, and Back

We present an Õ(m10/7) = Õ(m1.43)-time1 algorithm for the maximum s-t flow and the minimum s-t cut problems in directed graphs with unit capacities. This is the first improvement over the sparse-graph case of the long-standing O(m min{√m, n2/3}) running time bound due to Even and Tarjan [16]. By well-known reductions, this also establishes an Õ(m107)-time algorithm for the maximum-cardinality bipartite matching problem. That, in turn, gives an improvement over the celebrated O(m√n) running time bound of Hopcroft and Karp [25] whenever the input graph is sufficiently sparse. At a very high level, our results stem from acquiring a deeper understanding of interior-point methods - a powerful tool in convex optimization - in the context of flow problems, as well as, utilizing certain interplay between maximum flows and bipartite matchings.

[1]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[2]  W. T. Tutte The Factorization of Linear Graphs , 1947 .

[3]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[4]  Peter Elias,et al.  A note on the maximum flow through a network , 1956, IRE Trans. Inf. Theory.

[5]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[6]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[7]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[8]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[9]  J. Hopcroft,et al.  Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .

[10]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[11]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[12]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[13]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[14]  Vijay V. Vazirani,et al.  Maximum Matchings in General Graphs Through Randomization , 1989, J. Algorithms.

[15]  Vijay V. Vazirani,et al.  A Theory of Alternating Paths and Blossoms for Proving Correctness of the O(\surdVE) General Graph Matching Algorithm , 1990, IPCO.

[16]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[17]  Kurt Mehlhorn,et al.  Computing a Maximum Cardinality Matching in a Bipartite Graph in Time O(^1.5 sqrt m/log n) , 1991, Inf. Process. Lett..

[18]  Rajeev Motwani,et al.  Clique partitions, graph compression and speeding-up algorithms , 1991, STOC '91.

[19]  Robert E. Tarjan,et al.  A faster deterministic maximum flow algorithm , 1992, SODA '92.

[20]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[21]  Vijay V. Vazirani,et al.  A theory of alternating paths and blossoms for proving correctness of the $$O(\sqrt V E)$$ general graph maximum matching algorithm , 1990, Comb..

[22]  Ravindra K. Ahuja,et al.  Chapter 1 Applications of network optimization , 1995 .

[23]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[24]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[25]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[26]  Alexander Schrijver,et al.  On the history of the transportation and maximum flow problems , 2002, Math. Program..

[27]  Alan J. Hoffman,et al.  SOME RECENT APPLICATIONS OF THE THEORY OF LINEAR INEQUALITIES TO EXTREMAL COMBINATORIAL ANALYSIS , 2003 .

[28]  Shang-Hua Teng,et al.  Solving sparse, symmetric, diagonally-dominant linear systems in time O(m/sup 1.31/ , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[29]  Shang-Hua Teng,et al.  Solving Sparse, Symmetric, Diagonally-Dominant Linear Systems in Time O(m1.31) , 2003, ArXiv.

[30]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[31]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[32]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[33]  Andrew V. Goldberg,et al.  Maximum skew-symmetric flows and matchings , 2004, Math. Program..

[34]  A. Schrijver On the History of Combinatorial Optimization (Till 1960) , 2005 .

[35]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[36]  Daniel A. Spielman,et al.  Faster approximate lossy generalized flow via interior point algorithms , 2008, STOC.

[37]  Jonah Sherman,et al.  Breaking the Multicommodity Flow Barrier for O(vlog n)-Approximations to Sparsest Cut , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[38]  Nicholas J. A. Harvey Algebraic Algorithms for Matching and Matroid Problems , 2009, SIAM J. Comput..

[39]  Gary L. Miller,et al.  Approaching Optimality for Solving SDD Linear Systems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[40]  Aleksander Madry,et al.  Fast Approximation Algorithms for Cut-Based Problems in Undirected Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[41]  Ashish Goel,et al.  Perfect matchings in o(n log n) time in regular bipartite graphs , 2009, STOC '10.

[42]  Gary L. Miller,et al.  Approaching optimality for solving SDD systems , 2010, ArXiv.

[43]  Gary L. Miller,et al.  A Nearly-m log n Time Solver for SDD Linear Systems , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[44]  Jane Zundel MATCHING THEORY , 2011 .

[45]  Shang-Hua Teng,et al.  Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs , 2010, STOC '11.

[46]  Jonathan A. Kelner,et al.  From graphs to matrices, and back: new techniques for graph algorithms , 2011 .

[47]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[48]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[49]  Zeyuan Allen Zhu,et al.  A simple, combinatorial algorithm for solving SDD systems in nearly-linear time , 2013, STOC '13.

[50]  James B. Orlin,et al.  Max flows in O(nm) time, or better , 2013, STOC '13.

[51]  Satish Rao,et al.  A new approach to computing maximum flows using electrical flows , 2013, STOC '13.

[52]  Jonah Sherman,et al.  Nearly Maximum Flows in Nearly Linear Time , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[53]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[54]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[55]  Yin Tat Lee,et al.  An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs, and its Multicommodity Generalizations , 2013, SODA.