Internally 2,5-Thienylene-Bridged [46]Decaphyrin: (Annuleno)annulene Network Consisting of Möbius Aromatic Thia[28]hexaphyrins and Strong Hückel Aromaticity of its Protonated Form.

Internally 1,3-phenylene- and 2,5-thienylene-bridged [46]decaphyrins 2 and 3 have been synthesized. While 2 shows modest aromatic character derived from the global 46π-conjugated circuit, 3 displays larger aromatic character owing to the contribution of an (annuleno)annulene-type network consisting of two twisted Möbius aromatic thia[28]hexaphyrin segments in addition to the global 46π-network. Upon protonation, these [46]decaphyrins underwent large structural changes to acquire strong aromaticity. Protonated 3 has been revealed to take on a planar structure composed of fused two triangular thia[28]hexaphyrin segments.

[1]  A. Osuka,et al.  Chemistry of meso-Aryl-Substituted Expanded Porphyrins: Aromaticity and Molecular Twist. , 2017, Chemical reviews.

[2]  Dongho Kim,et al.  5,20-Di(pyridin-2-yl)-[28]hexaphyrin(1.1.1.1.1.1): A Stable Hückel Antiaromatic Hexaphyrin Stabilized by Intramolecular Hydrogen Bonding and Protonation-Induced Conformational Twist To Gain Möbius Aromaticity. , 2015, The Journal of organic chemistry.

[3]  Woojae Kim,et al.  Stable [48]-, [50]-, and [52]dodecaphyrins(1.1.0.1.1.0.1.1.0.1.1.0): the largest Hückel aromatic molecules. , 2015, Chemistry.

[4]  N. Williams,et al.  Cyclo[6]pyridine[6]pyrrole: a dynamic, twisted macrocycle with no meso bridges. , 2014, Journal of the American Chemical Society.

[5]  Jong Min Lim,et al.  Diprotonated [28]hexaphyrins(1.1.1.1.1.1): triangular antiaromatic macrocycles. , 2014, Angewandte Chemie.

[6]  Jong Min Lim,et al.  Modulation of dual electronic circuits of [26]hexaphyrins using internal aromatic straps. , 2013, Angewandte Chemie.

[7]  T. K. Chandrashekar,et al.  Core-modified meso-aryl hexaphyrins with an internal thiophene bridge: structure, aromaticity, and photodynamics. , 2013, Chemistry.

[8]  A. Osuka,et al.  Expandierte Porphyrine: überraschende Strukturen, elektronische Eigenschaften und Reaktivitäten , 2011 .

[9]  M. Stępień,et al.  Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. , 2011, Angewandte Chemie.

[10]  Lechosław Latos‐Grażyński,et al.  Figure‐Eight‐Strukturen, Möbius‐Bänder und mehr: Konformation und Aromatizität von Porphyrinoiden , 2011 .

[11]  A. Osuka,et al.  Expanded porphyrins: intriguing structures, electronic properties, and reactivities. , 2011, Angewandte Chemie.

[12]  Jong Min Lim,et al.  Aromaticity and photophysical properties of various topology-controlled expanded porphyrins. , 2010, Chemical Society reviews.

[13]  Dongho Kim,et al.  Defining spectroscopic features of heteroannulenic antiaromatic porphyrinoids , 2010 .

[14]  Jong Min Lim,et al.  Protonated [4n]pi and [4n+2]pi octaphyrins choose their Möbius/Hückel aromatic topology. , 2010, Journal of the American Chemical Society.

[15]  A. Osuka,et al.  Multiple conformational changes of beta-tetraphenyl meso-hexakis(pentafluorophenyl) substituted [26] and [28]hexaphyrins(1.1.1.1.1.1). , 2009, Chemical communications.

[16]  Jong Min Lim,et al.  Protonation-triggered conformational changes to möbius aromatic [32]heptaphyrins(1.1.1.1.1.1.1). , 2008, Angewandte Chemie.

[17]  Rainer Herges,et al.  Topology in chemistry: designing Möbius molecules. , 2006, Chemical reviews.

[18]  A. Osuka,et al.  Internally 1,4-phenylene-bridged meso aryl-substituted expanded porphyrins: the decaphyrin and octaphyrin cases. , 2005, Angewandte Chemie.

[19]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[20]  R. Herges,et al.  Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. , 2005, Chemical reviews.

[21]  A. Osuka,et al.  meso-Aryl-substituted [26]hexaphyrin(1.1.0.1.1.0) and [38]nonaphyrin(1.1.0.1.1.0.1.1.0) from oxidative coupling of a tripyrrane. , 2005, Angewandte Chemie.

[22]  S. Tamaru,et al.  A tin-complexation strategy for use with diverse acylation methods in the preparation of 1,9-diacyldipyrromethanes. , 2004, The Journal of organic chemistry.

[23]  J. Sessler,et al.  Synthetic expanded porphyrin chemistry. , 2003, Angewandte Chemie.

[24]  Jonathan L. Sessler,et al.  Synthesechemie expandierter Porphyrine , 2003 .

[25]  Rainer Herges and,et al.  Delocalization of Electrons in Molecules , 2001 .

[26]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[27]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .