Microstructure of metallic copper nanoparticles/metallic disc interface in metal–metal bonding using them

This paper describes a metal–metal bonding technique using metallic Cu nanoparticles prepared in aqueous solution. A colloid solution of metallic Cu particles with a size of 54 ± 15 nm was prepared by reducing Cu2+ (0.01 M (CH3COO)2Cu) with hydrazine (0.6 M) in the presence of stabilizers (5 × 10−4 M citric acid and 5 × 10−3 M cetyltrimethylammonium bromide) in water at room temperature in air. Discs made of metallic materials (Cu, Ni/Cu, or Ag/Ni/Cu) were successfully bonded under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in H2 gas with help of the metallic Cu particle powder. Shear strength required for separating the bonded discs was 27.9 ± 3.9 for Cu discs, 28.1 ± 4.1 for Ni/Cu discs, and 13.8 ± 2.6 MPa for Ag/Ni/Cu discs. Epitaxial crystal growth promotes on the discs with a good matching for the lattice constants between metallic nanoparticles and metallic disc surfaces, which leads to strong bonding. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  K. Prabhu,et al.  Reactive wetting, evolution of interfacial and bulk IMCs and their effect on mechanical properties of eutectic Sn-Cu solder alloy. , 2011, Advances in colloid and interface science.

[2]  Kevin A. Grossklaus,et al.  Utilizing the thermodynamic nanoparticle size effects for low temperature Pb-free solder , 2012 .

[3]  E. Ide,et al.  Low-Temperature Bonding Using Silver Nanoparticles Stabilized by Short-Chain Alkylamines , 2009 .

[4]  Y. C. Chan,et al.  Interfacial microstructure and shear strength of Ag nano particle doped Sn-9Zn solder in ball grid array packages , 2009, Microelectron. Reliab..

[5]  Yoshio Kobayashi,et al.  Preparation of copper nanoparticles and metal-metal bonding process using them , 2013 .

[6]  S. Xue,et al.  Development of Al–Si–Zn–Sr filler metals for brazing 6061 aluminum alloy , 2012 .

[7]  Nduka Nnamdi (Ndy) Ekere,et al.  Damage of lead-free solder joints in flip chip assemblies subjected to high-temperature thermal cycling , 2012 .

[8]  K. Maekawa,et al.  The characteristics of laser welded magnesium alloy using silver nanoparticles as insert material , 2012 .

[9]  Liang Zhang,et al.  Development of SnAg-based lead free solders in electronics packaging , 2012, Microelectron. Reliab..

[10]  Yoshiaki Morisada,et al.  A Low-Temperature Bonding Process Using Mixed Cu–Ag Nanoparticles , 2010 .

[11]  Bin Yang,et al.  Melting and solidification properties of the nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy , 2010 .

[12]  Chunqing Wang,et al.  Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles , 2012 .

[13]  A. E. Hammad,et al.  Enhancement of creep resistance and thermal behavior of eutectic Sn–Cu lead-free solder alloy by Ag and In-additions , 2012 .

[14]  E. Ganjeh,et al.  Evaluate of braze joint strength and microstructure characterize of titanium-CP with Ag-based filler alloy , 2012 .

[15]  J. Groza,et al.  Nanoparticulate materials densification , 1996 .

[16]  Epitaxial InP nanowire growth from Cu seed particles , 2011 .

[17]  M. Futamoto,et al.  Epitaxial growth of Sm(Co,Cu)5 thin film on Al2O3(0001) single-crystal substrate , 2009 .

[18]  Yusuke Yasuda,et al.  Optimal design of coating material for nanoparticles and its application for low-temperature interconnection , 2010 .

[19]  M. Aguiló,et al.  Ln3+:KLu(WO4)2/KLu(WO4)2 epitaxial layers: Crystal growth and physical characterisation , 2008 .

[20]  Kojiro F. Kobayashi,et al.  Study of Bonding Technology Using Silver Nanoparticles , 2008 .

[21]  Chunxiang Xu,et al.  Sintering dynamics and thermal stability of novel configurations of Ag clusters , 2012 .

[22]  A. Wu,et al.  Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging , 2012 .

[23]  A. El-Daly,et al.  Microstructural evolution and tensile properties of Sn–5Sb solder alloy containing small amount of Ag and Cu , 2011 .

[24]  M. Cavalli,et al.  Diffusion bonding of commercially pure Ni using Cu interlayer , 2012 .

[25]  M. M. Arafat,et al.  Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds , 2012 .

[26]  M. Palcut,et al.  Kinetics of intermetallic phase formation at the interface of Sn–Ag–Cu–X (X = Bi, In) solders with Cu substrate , 2011 .

[27]  Emeka H. Amalu,et al.  High temperature reliability of lead-free solder joints in a flip chip assembly , 2012 .

[28]  Yoshio Kobayashi,et al.  Metal–metal bonding process using metallic copper nanoparticles prepared in aqueous solution , 2012 .

[29]  Guo-Quan Lu,et al.  Low-Temperature Sintered Nanoscale Silver as a Novel Semiconductor Device-Metallized Substrate Interconnect Material , 2006, IEEE Transactions on Components and Packaging Technologies.

[30]  Yoshio Kobayashi,et al.  Preparation of metallic copper nanoparticles in aqueous solution and their bonding properties , 2011 .

[31]  S. Owa,et al.  Lattice-mismatched InGaP/GaAs (111)B liquid phase epitaxy with epitaxial lateral overgrowth , 2009 .

[32]  Takuto Yamaguchi,et al.  Interfacial Bonding Mechanism Using Silver Metallo-Organic Nanoparticles to Bulk Metals and Observation of Sintering Behavior , 2008 .

[33]  Kojiro F. Kobayashi,et al.  Metal-metal bonding process using Ag metallo-organic nanoparticles , 2005 .

[34]  Mieko Takagi,et al.  Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films , 1954 .

[35]  Epitaxial growth of self-ordered ZnO nanostructures on sapphire substrates by seed-assisted hydrothermal growth , 2013 .