Mean-Square Filtering for Polynomial System States Confused with Poisson Noises over Polynomial Observations

Published version of an article in the journal: Modeling, Identification and Control. Also available from the publisher at: http://dx.doi.org/10.4173/mic.2011.2.1

[1]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[2]  W. Wonham Some applications of stochastic difierential equations to optimal nonlinear ltering , 1964 .

[3]  H. Kushner On the Differential Equations Satisfied by Conditional Probablitity Densities of Markov Processes, with Applications , 1964 .

[4]  H. Tucker,et al.  A Graduate Course in Probability , 1968 .

[5]  Thomas S. Huang,et al.  Image processing , 1971 .

[6]  V. Benes Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .

[7]  S. Marcus,et al.  Nonexistence of finite dimensional filters for conditional statistics of the cubic sensor problem , 1983 .

[8]  R. D. Hughes Probability Theory and Mathematical Statistics for Engineers , 1985 .

[9]  B. Øksendal Stochastic Differential Equations , 1985 .

[10]  Lihua Xie,et al.  Robust filtering for a class of discrete-time uncertain nonlinear systems: AnH∞ approach , 1996 .

[11]  Minyue Fu,et al.  Robust nonlinear H∞ filtering , 1996, Autom..

[12]  G.-G. Hu Finite-dimensional filters with nonlinear drift. , 1997 .

[13]  Emilia Fridman,et al.  On regional nonlinear H ∞ -filtering , 1997 .

[14]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  P. Shi Filtering on sampled-data systems with parametric uncertainty , 1998, IEEE Trans. Autom. Control..

[16]  Zhengrong Liang,et al.  Combined transformation of ordering SPECT sinograms for signal extraction from measurements with Poisson noise , 2001, SPIE Medical Imaging.

[17]  William M. McEneaney,et al.  Robust Limits of Risk Sensitive Nonlinear Filters , 2001, Math. Control. Signals Syst..

[18]  Edwin Engin Yaz,et al.  State estimation of uncertain nonlinear stochastic systems with general criteria , 2001, Appl. Math. Lett..

[19]  P. Hannequin,et al.  Statistical and heuristic image noise extraction (SHINE): a new method for processing Poisson noise in scintigraphic images. , 2002, Physics in medicine and biology.

[20]  Shengyuan Xu,et al.  Robust H ∞ filtering for a class of non-linear systems with state delay and parameter uncertainty , 2002 .

[21]  V. Pugachev,et al.  Stochastic Systems: Theory and Applications , 2002 .

[22]  Ilya V. Kolmanovsky,et al.  Optimal containment control for a class of stochastic systems perturbed by poisson and wiener processes , 2002, IEEE Trans. Autom. Control..

[23]  Shengyuan Xu,et al.  Robust Filtering for a Class of Discrete-Time Uncertain Nonlinear Systems with State Delay , 2002 .

[24]  James Lam,et al.  Nonlinear filtering for state delayed systems with Markovian switching , 2003, IEEE Trans. Signal Process..

[25]  M. Mahmoud,et al.  Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters , 2003 .

[26]  Shengyuan Xu,et al.  Robust H∞ filtering for uncertain impulsive stochastic systems under sampled measurements , 2003, Autom..

[27]  Huijun Gao,et al.  A delay-dependent approach to robust H∞ filtering for uncertain discrete-time state-delayed systems , 2004, IEEE Trans. Signal Process..

[28]  Lihua Xie,et al.  New Approach to Mixed Filtering for Polytopic Discrete-Time Systems , 2005 .

[29]  James Lam,et al.  New approach to mixed H/sub 2//H/sub /spl infin// filtering for polytopic discrete-time systems , 2005, IEEE Transactions on Signal Processing.

[30]  Huijun Gao,et al.  Robust H∞ Filtering for Uncertain Discrete Stochastic Systems with Time Delays , 2005 .

[31]  J. Fadili,et al.  Fast Poisson Noise Removal by Biorthogonal Haar Domain Hypothesis Testing , 2006, math/0608631.

[32]  M. Basin,et al.  Optimal Filtering for Incompletely Measured Polynomial States over Linear Observations , 2008, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[33]  Huijun Gao,et al.  ${\cal H}_{\infty}$ Estimation for Uncertain Systems With Limited Communication Capacity , 2007, IEEE Transactions on Automatic Control.

[34]  Michael V. Basin,et al.  Itô–Volterra Optimal State Estimation With Continuous, Multirate, Randomly Sampled, and Delayed Measurements , 2007, IEEE Transactions on Automatic Control.

[35]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[36]  Mohamed-Jalal Fadili,et al.  Image deconvolution under poisson noise using sparse representations and proximal thresholding iteration , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[37]  Michael Basin,et al.  Optimal filtering for incompletely measured polynomial states with multiplicative noise , 2008, ACC.

[38]  Michael V. Basin,et al.  Optimal Filtering for Incompletely Measured Polynomial Systems with Multiplicative Noise , 2009, 2008 American Control Conference.

[39]  Zidong Wang,et al.  H∞ filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities , 2008, Autom..

[40]  M. Basin New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems , 2008 .

[41]  Zidong Wang,et al.  H∞ filtering for nonlinear discrete-time stochastic systems with randomly varying sensor delays , 2009, Autom..

[42]  Daniel W. C. Ho,et al.  Robust H∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements , 2009, Autom..

[43]  Zidong Wang,et al.  Robust filtering with stochastic nonlinearities and multiple missing measurements , 2009, Autom..

[44]  Peng Shi,et al.  Approximate finite-dimensional filtering for polynomial states over polynomial observations , 2010, Int. J. Control.

[45]  Michael Basin,et al.  Mean-square filter design for nonlinear polynomial systems with Poisson noise , 2011, Proceedings of the 2011 American Control Conference.

[46]  H. Tucker A Graduate Course in Probability , 2013 .