On Chebyshev Polynomials of Matrices

The $m$th Chebyshev polynomial of a square matrix $A$ is the monic polynomial that minimizes the matrix 2-norm of $p(A)$ over all monic polynomials $p(z)$ of degree $m$. This polynomial is uniquely defined if $m$ is less than the degree of the minimal polynomial of $A$. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well-known properties of Chebyshev polynomials of compact sets in the complex plane. We also derive explicit formulas of the Chebyshev polynomials of certain classes of matrices, and explore the relation between Chebyshev polynomials of one of these matrix classes and Chebyshev polynomials of lemniscatic regions in the complex plane.

[1]  Lloyd N. Trefethen,et al.  GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..

[2]  E. Blum Numerical analysis and computation theory and practice , 1972 .

[3]  L. Trefethen Spectra and pseudospectra , 2005 .

[4]  V. Smirnov,et al.  Functions of a complex variable : constructive theory , 1968 .

[5]  K. Toh Matrix Approximation Problems and Nonsymmetric Iterative Methods , 1996 .

[6]  Shmuel Friedland On matrix approximation , 1975 .

[7]  K. Zietak,et al.  On Approximation Problems With Zero-Trace Matrices , 1996 .

[8]  Jörg Liesen,et al.  On Best Approximations of Polynomials in Matrices in the Matrix 2-Norm , 2009, SIAM J. Matrix Anal. Appl..

[9]  Karl-Georg Steffens The history of approximation theory : from Euler to Bernstein , 2006 .

[10]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[11]  K. Zietak Properties of linear approximations of matrices in the spectral norm , 1993 .

[12]  Kim-Chuan Toh,et al.  The Chebyshev Polynomials of a Matrix , 1999, SIAM J. Matrix Anal. Appl..

[13]  Yinyu Ye,et al.  DSDP5: Software for Semidefinite Programming , 2005 .

[14]  Karl-Georg Steffens The history of approximation theory , 2005 .

[15]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[16]  Anne Greenbaum,et al.  Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..

[17]  Youcef Saad,et al.  Projection methods for solving large sparse eigenvalue problems , 1983 .

[18]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[19]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[20]  Kim-Chuan Toh,et al.  GMRES vs. Ideal GMRES , 1997, SIAM J. Matrix Anal. Appl..

[21]  Stefan Güttel,et al.  A generalization of the steepest descent method for matrix functions , 2008 .

[22]  L. Trefethen,et al.  Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .

[23]  Franz Peherstorfer,et al.  CHEBYSHEV APPROXIMATION VIA POLYNOMIAL MAPPINGS AND THE CONVERGENCE BEHAVIOUR OF KRYLOV SUBSPACE METHODS , 2001 .

[24]  Anne Greenbaum,et al.  Upper and lower bounds on norms of functions of matrices , 2009 .

[25]  Kim-Chuan Toh,et al.  SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .