Breaking the log n barrier on rumor spreading

$O(\log n)$ rounds has been a well known upper bound for rumor spreading using push&pull in the random phone call model (i.e., uniform gossip in the complete graph). A matching lower bound of $\Omega(\log n)$ is also known for this special case. Under the assumption of this model and with a natural addition that nodes can call a partner once they learn its address (e.g., its IP address) we present a new distributed, address-oblivious and robust algorithm that uses push&pull with pointer jumping to spread a rumor to all nodes in only $O(\sqrt{\log n})$ rounds, w.h.p. This algorithm can also cope with $F= O(n/2^{\sqrt{\log n}})$ node failures, in which case all but $O(F)$ nodes become informed within $O(\sqrt{\log n})$ rounds, w.h.p.

[1]  Bernhard Haeupler,et al.  Simple, Fast and Deterministic Gossip and Rumor Spreading , 2012, SODA.

[2]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[3]  Idit Keidar,et al.  Correctness of gossip-based membership under message loss , 2009, PODC '09.

[4]  Thomas Sauerwald,et al.  Communication Complexity of Quasirandom Rumor Spreading , 2013, Algorithmica.

[5]  Robert Elsässer,et al.  Efficient randomised broadcasting in random regular networks with applications in peer-to-peer systems , 2016, Distributed Computing.

[6]  Johannes Gehrke,et al.  Gossip-based computation of aggregate information , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[7]  Thomas Sauerwald,et al.  Ultra-fast rumor spreading in social networks , 2012, SODA.

[8]  E T. Leighton,et al.  Introduction to parallel algorithms and architectures , 1991 .

[9]  Eli Upfal,et al.  Randomized Broadcast in Networks , 1990, Random Struct. Algorithms.

[10]  Chen Avin,et al.  Faster Rumor Spreading: Breaking the logn Barrier , 2013, DISC.

[11]  Mor Harchol-Balter,et al.  Resource discovery in distributed networks , 1999, PODC '99.

[12]  Christian Schindelhauer,et al.  Distributed random digraph transformations for peer-to-peer networks , 2006, SPAA '06.

[13]  Dahlia Malkhi,et al.  Optimal gossip with direct addressing , 2014, PODC '14.

[14]  Thomas Sauerwald,et al.  On Mixing and Edge Expansion Properties in Randomized Broadcasting , 2007, Algorithmica.

[15]  Richard M. Karp,et al.  Randomized rumor spreading , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[16]  Uzi Vishkin,et al.  Deterministic Resource Discovery in Distributed Networks , 2003, Theory of Computing Systems.

[17]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[18]  George Giakkoupis,et al.  Tight bounds for rumor spreading in graphs of a given conductance , 2011, STACS.

[19]  Thomas Sauerwald,et al.  Quasirandom Rumor Spreading: Expanders, Push vs. Pull, and Robustness , 2009, ICALP.

[20]  B. Pittel On spreading a rumor , 1987 .

[21]  Thomas Sauerwald,et al.  The power of memory in randomized broadcasting , 2008, SODA '08.

[22]  Martin Raab,et al.  "Balls into Bins" - A Simple and Tight Analysis , 1998, RANDOM.

[23]  Muriel Médard,et al.  Algebraic gossip: a network coding approach to optimal multiple rumor mongering , 2006, IEEE Transactions on Information Theory.

[24]  Thomas Sauerwald,et al.  On the runtime and robustness of randomized broadcasting , 2006, Theor. Comput. Sci..

[25]  Scott Shenker,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[26]  Thomas Sauerwald,et al.  Quasirandom rumor spreading , 2008, SODA '08.

[27]  Mahmoud Fouz,et al.  Social networks spread rumors in sublogarithmic time , 2011, STOC '11.

[28]  Shay Kutten,et al.  Asynchronous resource discovery in peer-to-peer networks , 2007, Comput. Networks.

[29]  Boaz Patt-Shamir,et al.  Minimum-Weight Spanning Tree Construction in O(log log n) Communication Rounds , 2005, SIAM J. Comput..

[30]  Pierre Fraigniaud,et al.  Opportunistic spatial gossip over mobile social networks , 2008, WOSN '08.

[31]  Idit Keidar,et al.  Araneola: a scalable reliable multicast system for dynamic environments , 2004, Third IEEE International Symposium on Network Computing and Applications, 2004. (NCA 2004). Proceedings..

[32]  Alan M. Frieze,et al.  The shortest-path problem for graphs with random arc-lengths , 1985, Discret. Appl. Math..

[33]  Petar Maymounkov,et al.  Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance , 2011, STOC '12.