Calcium influx through nicotinic receptor in rat central neurons: Its relevance to cellular regulation

[1]  C. Mulle,et al.  Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  S. Heinemann,et al.  Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition , 1991, Science.

[3]  A. Marty,et al.  Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents , 1991, Neuron.

[4]  R. Scobey,et al.  Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. , 1991, Science.

[5]  H. Brenner,et al.  Metabolic stabilization of endplate acetylcholine receptors regulated by Ca2+ influx associated with muscle activity , 1991, Nature.

[6]  E. Decker,et al.  Calcium permeability of the nicotinic acetylcholine receptor: the single-channel calcium influx is significant , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  D. Aunis,et al.  Modulation of secretion by dopamine involves decreases in calcium and nicotinic currents in bovine chromaffin cells. , 1990, The Journal of physiology.

[8]  S. Ozawa,et al.  Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. , 1990, The Journal of physiology.

[9]  J. Changeux,et al.  A novel type of nicotinic receptor in the rat central nervous system characterized by patch-clamp techniques , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  D. Tank,et al.  Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation , 1989, Nature.

[11]  D. Bartel,et al.  Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. , 1989, Genes & development.

[12]  M. Berridge,et al.  Localization and heterogeneity of agonist‐induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura‐2. , 1989, The EMBO journal.

[13]  R. Messing,et al.  Nicotinic and muscarinic agonists stimulate rapid protein kinase C translocation in PC12 cells , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  D. Tank,et al.  Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. , 1988, Science.

[15]  S. Schuetze,et al.  Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle , 1988, Nature.

[16]  R. Wong,et al.  GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. , 1988, Science.

[17]  L. Nowak,et al.  The role of divalent cations in the N‐methyl‐D‐aspartate responses of mouse central neurones in culture. , 1988, The Journal of physiology.

[18]  R. Mcgee,et al.  Effects of Prolonged Depolarization on the Nicotinic Acetylcholine Receptors of PC12 Cells , 1988, Journal of neurochemistry.

[19]  M. Mayer,et al.  Permeation and block of N‐methyl‐D‐aspartic acid receptor channels by divalent cations in mouse cultured central neurones. , 1987, The Journal of physiology.

[20]  M. Mayer,et al.  Agonist- and voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  T. Yakushiji,et al.  Intracellular calcium ions decrease the affinity of the GABA receptor , 1986, Nature.

[22]  Robert K. S. Wong,et al.  Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems , 1986, Journal of Neuroscience Methods.

[23]  M. Delay,et al.  Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Mayer,et al.  A calcium‐activated chloride current generates the after‐depolarization of rat sensory neurones in culture. , 1985, The Journal of physiology.

[25]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[26]  M. Segal,et al.  A Ca-dependent Cl− conductance in cultured mouse spinal neurones , 1984, Nature.

[27]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[28]  P. Sánchez-García,et al.  Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release , 1983, Neuroscience.

[29]  R. Holz,et al.  Relationship Between Ca2+ Uptake and Catecholamine Secretion in Primary Dissociated Cultures of Adrenal Medulla , 1982, Journal of neurochemistry.

[30]  D. Kilpatrick,et al.  Calcium Uptake and Catecholamine Secretion by Cultured Bovine Adrenal Medulla Cells , 1982, Journal of neurochemistry.

[31]  P. Kostyuk,et al.  Ionic currents in the somatic membrane of rat dorsal root ganglion neurons—II. Calcium currents , 1981, Neuroscience.

[32]  P. G. Kostyuk,et al.  Ionic currents in the somatic membrane of rat dorsal root ganglion neurons—I. Sodium currents , 1981, Neuroscience.

[33]  T. Dwyer,et al.  The permeability of endplate channels to monovalent and divalent metal cations , 1980, The Journal of general physiology.

[34]  R. Miledi,et al.  Transmitter induced calcium entry across the post‐synaptic membrane at frog end‐plates measured using arsenazo III. , 1980, The Journal of physiology.

[35]  R. Miledi,et al.  Calcium conductance of acetylcholine-induced endplate channels , 1979, Nature.

[36]  G. Padmanaban,et al.  Mechanism of action of -N-oxalyl - l- , -diaminopropionic acid, Lathyrus sativus neurotoxin: effect on brain lysosomes. , 1971, Nature: New biology.

[37]  B. Katz,et al.  Spontaneous and evoked activity of motor nerve endings in calcium Ringer , 1969, The Journal of physiology.

[38]  J. Changeux,et al.  Functional architecture of the nicotinic acetylcholine receptor , 1994 .

[39]  E. Deneris,et al.  Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. , 1991, Trends in pharmacological sciences.

[40]  A. Drasdo,et al.  Presynaptic nicotinic receptors and the modulation of transmitter release. , 1990, Ciba Foundation symposium.

[41]  G. Bock,et al.  The Biology of nicotine dependence , 1990 .

[42]  K. Fuxe,et al.  On the Role of Receptor-Receptor Interactions in Synaptic Transmission: Biochemical and Autoradiographical Studies on the Interactions between α2-adrenergic and Neuropeptide Y Receptors in the Nucleus Tractus Solitarius , 1987 .