A novel LMI-based optimization algorithm for the guaranteed estimation of the domain of attraction using rational Lyapunov functions

In this article we deal with the classical problem of estimating the domain of attraction (DOA) of autonomous dynamical systems. We propose a new LMI estimation method based on recent results from the mathematical theory of moments. In contrast to previous works we exploit the advantages of rational Lyapunov functions to enhance the estimates. Several examples illustrate the estimation method.

[1]  S. Aneke Mathematical modelling of drug resistant malaria parasites and vector populations , 2002 .

[2]  R. K. Miller,et al.  Stability analysis of complex dynamical systems , 1982 .

[3]  E. Davison,et al.  A computational method for determining quadratic lyapunov functions for non-linear systems , 1971 .

[4]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[5]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[6]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[7]  B. Tibken,et al.  Estimation of the domain of attraction for polynomial systems using multidimensional grids , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[8]  J. Hindmarsh,et al.  A model of the nerve impulse using two first-order differential equations , 1982, Nature.

[9]  B. Tibken,et al.  Estimation of the domain of attraction for polynomial systems , 2005, The Fourth International Workshop on Multidimensional Systems, 2005. NDS 2005..

[10]  P. Parrilo On a decomposition of multivariable forms via LMI methods , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[11]  J. Thorp,et al.  Stability regions of nonlinear dynamical systems: a constructive methodology , 1989 .

[12]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[14]  Jean Pierre Haeberly,et al.  Sdppack User's Guide , 1997 .

[15]  A. M. Li︠a︡punov Problème général de la stabilité du mouvement , 1949 .

[16]  Multivariate polynomial positivity invariance under coefficient perturbation , 1980 .

[17]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[18]  A. Levin An analytical method of estimating the domain of attraction for polynomial differential equations , 1994, IEEE Trans. Autom. Control..

[19]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[20]  M. Vidyasagar,et al.  Maximal Lyapunov Functions and Domains of Attraction for Autonomous Nonlinear Systems , 1981 .

[21]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[22]  K. Forsman Constructive Commutative Algebra in Nonlinear Control Theory , 1991 .

[23]  James P. Keener,et al.  Mathematical physiology , 1998 .

[24]  O. Hachicho,et al.  Estimating domains of attraction of a class of nonlinear dynamical systems with LMI methods based on the theory of moments , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[25]  A. Vicino,et al.  On the estimation of asymptotic stability regions: State of the art and new proposals , 1985 .

[26]  B. Tibken Estimation of the domain of attraction for polynomial systems via LMIs , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[27]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[28]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[29]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[30]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[31]  N. MacDonald Nonlinear dynamics , 1980, Nature.

[32]  A. Michel,et al.  Stability analysis of complex dynamical systems: Some computational methods , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[33]  Alberto Tesi,et al.  On the stability domain estimation via a quadratic Lyapunov function: convexity and optimality properties for polynomial systems , 1996, IEEE Trans. Autom. Control..

[34]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[35]  Davison,et al.  A computational method for determining quadratic Lyapunov Functions for nonlinear systems , 1970 .

[36]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[37]  Graziano Chesi,et al.  Computing optimal quadratic lyapunov functions for polynomial nonlinear systems via lmis , 2002 .

[38]  C. Storey,et al.  Comparison of numerical methods in stability analysis , 1969 .