Tailoring selective pores of carbon molecular sieve membranes towards enhanced N2/CH4 separation efficiency

[1]  W. Won,et al.  Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for C3H6/C3H8 separation , 2020 .

[2]  I. Pinnau,et al.  Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor , 2019, Journal of Membrane Science.

[3]  I. Pinnau,et al.  Thin Composite Carbon Molecular Sieve Membranes from a Polymer of Intrinsic Microporosity Precursor. , 2019, ACS applied materials & interfaces.

[4]  O. Guillon,et al.  High-performance carbon molecular sieve membranes for hydrogen purification and pervaporation dehydration of organic solvents , 2019, Journal of Materials Chemistry A.

[5]  Seung Yong Lee,et al.  Rigid double-stranded siloxane-induced high-flux carbon molecular sieve hollow fiber membranes for CO2/CH4 separation , 2019, Journal of Membrane Science.

[6]  Jianguo Wang,et al.  A strain-controlled C 2 N monolayer membrane for gas separation in PEMFC application , 2018 .

[7]  M. Carreon,et al.  Molecular sieve membranes for N_2/CH_4 separation , 2018 .

[8]  Q. Xue,et al.  585 divacancy-defective germanene as a hydrogen separation membrane: A DFT study , 2017 .

[9]  W. Koros,et al.  Ultraselective Carbon Molecular Sieve Membranes with Tailored Synergistic Sorption Selective Properties , 2017, Advanced materials.

[10]  Chen Zhang,et al.  Carbon molecular sieve structure development and membrane performance relationships , 2017 .

[11]  Xiangshan Chen,et al.  Hydrogen separation by porous phosphorene: A periodical DFT study , 2016 .

[12]  W. Koros,et al.  Effects of pyrolysis conditions on gas separation properties of 6FDA/DETDA:DABA(3:2) derived carbon molecular sieve membranes , 2016 .

[13]  Yu Seong Do,et al.  Side-chain engineering of ladder-structured polysilsesquioxane membranes for gas separations , 2016 .

[14]  Xuhui Feng,et al.  Highly permeable N 2 /CH 4 separation SAPO-34 membranes synthesized by diluted gels and increased crystallization temperature , 2016 .

[15]  Chongli Zhong,et al.  Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification. , 2016, ACS applied materials & interfaces.

[16]  Xuhui Feng,et al.  SAPO-34 Membranes for N 2 /CH 4 separation: Preparation, characterization, separation performance and economic evaluation , 2015 .

[17]  W. Koros,et al.  Physical aging in carbon molecular sieve membranes , 2014 .

[18]  Kecheng Zhang,et al.  Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide. , 2014, ChemSusChem.

[19]  M. Zhan,et al.  Thermal properties of the polyimide foam prepared from aromatic dianhydride and isocyanate , 2012 .

[20]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[21]  Claude Mirodatos,et al.  Natural gas treating by selective adsorption: Material science and chemical engineering interplay , 2009 .

[22]  S. Hosseini,et al.  Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification , 2009 .

[23]  L. Robeson,et al.  The upper bound revisited , 2008 .

[24]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[25]  Young Moo Lee,et al.  Pyrolytic carbon–silica membrane: a promising membrane material for improved gas separation , 2003 .

[26]  W. Koros,et al.  Investigation of porosity of carbon materials and related effects on gas separation properties , 2003 .

[27]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[28]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[29]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  A. McDermott,et al.  Hydrogen Bonding of Carboxyl Groups in Solid-State Amino Acids and Peptides: Comparison of Carbon Chemical Shielding, Infrared Frequencies, and Structures , 1994 .

[32]  P. Painter,et al.  Hydrogen bonding in polymer blends. 5. Blends involving polymers containing methacrylic acid and oxazoline groups , 1988 .

[33]  P. Tarazona,et al.  Phase equilibria of fluid interfaces and confined fluids , 1987 .

[34]  Carlson,et al.  Polar gyroscopic tests of general relativity. , 1985, Physical review. D, Particles and fields.

[35]  P. Tarazona,et al.  Free-energy density functional for hard spheres. , 1985, Physical review. A, General physics.

[36]  J. Falconer,et al.  Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes , 2015 .

[37]  W. Koros,et al.  Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation , 2014 .

[38]  T. L. Cottrell The strengths of chemical bonds , 1958 .