Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency

The band structure of PbTe can be manipulated by alloying with MgTe to control the band degeneracy. This is used to stabilize the optimal carrier concentration, making it less temperature dependent, demonstrating a new strategy to improve overall thermoelectric efficiency over a broad temperature range.

[1]  G. J. Snyder,et al.  Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride , 2011 .

[2]  B. Paul,et al.  Dramatic enhancement of thermoelectric power factor in PbTe:Cr co-doped with iodine , 2011 .

[3]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[4]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[5]  B. Paul,et al.  The effect of chromium impurity on the thermoelectric properties of PbTe in the temperature range 100–600 K , 2011 .

[6]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[7]  G. J. Snyder,et al.  Self‐Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance , 2011 .

[8]  G. J. Snyder,et al.  Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe , 2011, Advanced materials.

[9]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[10]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[11]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[12]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[13]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[14]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[15]  G. J. Snyder,et al.  Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators , 2004 .

[16]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[17]  G. J. Snyder,et al.  Thermoelectric efficiency and compatibility. , 2003, Physical review letters.

[18]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[19]  W. Ossau,et al.  Epitaxy of Zn1 − xMgxSeyTe1 − y on (100)InAs , 1996 .

[20]  D. Rowe,et al.  Electronic contribution to the thermal conductivity of narrow band gap semiconductors-effect of non-parabolicity of bands , 1985 .

[21]  H. Sitter,et al.  Structure of the second valence band in PbTe , 1977 .

[22]  E. Putley Galvano- and thermo-magnetic coefficients for a multi-band conductor , 1975 .

[23]  R. Blachnik,et al.  Thermodynamische Eigenschaften von IV–VI-Verbindungen: Bleichalkogenide / Thermodynamic Properties of IV–VI-Compounds: Leadchalcogenides , 1974 .

[24]  B. Sealy,et al.  A comparison of phase equilibria in some II-IV-VI compounds based on PbTe , 1973 .

[25]  L. M. Rogers,et al.  Transport and optical properties of the CdxPb1-xSe and MgxPb1-xSe alloy systems , 1972 .

[26]  L. M. Rogers Electron scattering in some II-IV-VI alloy semiconductors , 1971 .

[27]  L. M. Rogers,et al.  Transport properties of the CdxPb1?x Te alloy system , 1971 .

[28]  L. M. Rogers,et al.  Transport and optical properties of the MgxPb1−x Te alloy system , 1971 .

[29]  L. M. Rogers,et al.  VALENCE BAND STRUCTURE OF PbTe , 1968 .

[30]  R. Tauber,et al.  Thermal and Optical Energy Gaps in PbTe , 1966 .

[31]  L. Kleinman,et al.  Energy Bands of PbTe, PbSe, and PbS , 1966 .

[32]  H. A. Lyden Temperature Dependence of the Effective Masses in PbTe , 1964 .

[33]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[34]  R. S. Allgaier Valence Bands in Lead Telluride , 1961 .

[35]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .

[36]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[37]  G. Nimtz,et al.  Narrow-gap lead salts , 1983 .

[38]  B. Sealy,et al.  Some physical properties of the PbTe-MgTe alloy system , 1972 .