max-cut and Containment Relations in Graphs

We study MAX-CUT in classes of graphs defined by forbidding a single graph as a subgraph, induced subgraph, or minor. For the first two containment relations, we prove dichotomy theorems. For the minor order, we show how to solve MAX-CUT in polynomial time for the class obtained by forbidding a graph with crossing number at most one (this generalizes a known result for K5-minor-free graphs) and identify an open problem which is the missing case for a dichotomy theorem.

[1]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[2]  Ken-ichi Kawarabayashi,et al.  Algorithmic graph minor theory: Decomposition, approximation, and coloring , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[3]  Robin Thomas,et al.  Quickly excluding a forest , 1991, J. Comb. Theory, Ser. B.

[4]  Jan Vondrák,et al.  Optimization via enumeration: a new algorithm for the Max Cut Problem , 2001, Math. Program..

[5]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[6]  Klaus Jansen,et al.  On the Complexity of the Maximum Cut Problem , 1994, Nord. J. Comput..

[7]  Vadim V. Lozin,et al.  Maximum independent sets in subclasses of P5-free graphs , 2009, Inf. Process. Lett..

[8]  Erik D. Demaine,et al.  Exponential Speedup of Fixed-Parameter Algorithms for Classes of Graphs Excluding Single-Crossing Graphs as Minors , 2005, Algorithmica.

[9]  Paul D. Seymour,et al.  Excluding a graph with one crossing , 1991, Graph Structure Theory.

[10]  Alexander Schrijver A Short Proof of Guenin's Characterization of Weakly Bipartite Graphs , 2002, J. Comb. Theory, Ser. B.

[11]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[12]  F. Barahona The max-cut problem on graphs not contractible to K5 , 1983 .

[13]  Erik D. Demaine,et al.  -Approximation for Treewidth of Graphs Excluding a Graph with One Crossing as a Minor , 2002, APPROX.

[14]  Claudio Arbib,et al.  A Polynomial Characterization of Some Graph Partitioning Problems , 1988, Inf. Process. Lett..

[15]  V. E. Alekseev,et al.  On easy and hard hereditary classes of graphs with respect to the independent set problem , 2003, Discret. Appl. Math..

[16]  Vadim V. Lozin,et al.  NP-hard graph problems and boundary classes of graphs , 2007, Theor. Comput. Sci..

[17]  Vadim V. Lozin,et al.  Boundary classes of graphs for the dominating set problem , 2004, Discrete Mathematics.

[18]  Bertrand Guenin,et al.  A Characterization of Weakly Bipartite Graphs , 1998, Electron. Notes Discret. Math..

[19]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[20]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[21]  Erik D. Demaine,et al.  Approximation algorithms for classes of graphs excluding single-crossing graphs as minors , 2004, J. Comput. Syst. Sci..

[22]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[23]  F. Hadlock,et al.  Finding a Maximum Cut of a Planar Graph in Polynomial Time , 1975, SIAM J. Comput..

[24]  George L. Nemhauser,et al.  A polynomial algorithm for the max-cut problem on graphs without long odd cycles , 1984, Math. Program..

[25]  Josep Díaz,et al.  MAX-CUT and MAX-BISECTION are NP-hard on unit disk graphs , 2006, Theor. Comput. Sci..

[26]  Martin Grötschel,et al.  Weakly bipartite graphs and the Max-cut problem , 1981, Oper. Res. Lett..

[27]  Venkatesan Guruswami Maximum Cut on Line and Total Graphs , 1999, Discret. Appl. Math..