Regarded as one of the most promising transmission
techniques for future wireless communications, the discrete cosine
transform (DCT) based multicarrier modulation (MCM) system
employs cosine basis as orthogonal functions for real-modulated
symbols multiplexing, by which the minimum orthogonal frequency
spacing can be reduced by half compared to discrete
Fourier transform (DFT) based one. With a time-reversed prefilter
employed at the front of the receiver, interference-free
one-tap equalization is achievable for the DCT-based systems.
However, due to the correlated pre-filtering operation in time
domain, the signal-to-noise ratio (SNR) is enhanced as a result
at the output. This leads to reformulated detection criterion to
compensate for such filtering effect, rendering minimum-meansquare-
error (MMSE) and maximum likelihood (ML) detections
applicable to the DCT-based multicarrier system. In this paper,
following on the pre-filtering based DCT-MCM model that build
in the literature work, we extend the overall system by considering
both transceiver perfections and imperfections, where
frequency offset, time offset and insufficient guard sequence are
included. In the presence of those imperfection errors, the DCTMCM
systems are analysed in terms of desired signal power,
inter-carrier interference (ICI) and inter-symbol interference
(ISI). Thereafter, new detection algorithms based on zero forcing
(ZF) iterative results are proposed to mitigate the imperfection
effect. Numerical results show that the theoretical analysis match
the simulation results, and the proposed iterative detection
algorithms are able to improve the overall system performance
significantly.