Human-like external function of the foot, and fully upright gait, confirmed in the 3.66 million year old Laetoli hominin footprints by topographic statistics, experimental footprint-formation and computer simulation

It is commonly held that the major functional features of the human foot (e.g. a functional longitudinal medial arch, lateral to medial force transfer and hallucal (big-toe) push-off) appear only in the last 2 Myr, but functional interpretations of footbones and footprints of early human ancestors (hominins) prior to 2 million years ago (Mya) remain contradictory. Pixel-wise topographical statistical analysis of Laetoli footprint morphology, compared with results from experimental studies of footprint formation; foot-pressure measurements in bipedalism of humans and non-human great apes; and computer simulation techniques, indicate that most of these functional features were already present, albeit less strongly expressed than in ourselves, in the maker of the Laetoli G-1 footprint trail, 3.66 Mya. This finding provides strong support to those previous studies which have interpreted the G-1 prints as generally modern in aspect.

[1]  R. Crompton,et al.  Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor , 2008, Journal of anatomy.

[2]  L. Sneddon,et al.  Guidelines for the treatment of animals in behavioural research and teaching , 2012, Animal Behaviour.

[3]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[4]  P Lundgren,et al.  Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. , 2008, Gait & posture.

[5]  P. Aerts,et al.  Functional analysis of the gibbon foot during terrestrial bipedal walking: plantar pressure distributions and three-dimensional ground reaction forces. , 2005, American journal of physical anthropology.

[6]  M. Leakey,et al.  Laetoli : a Pliocene site in northern Tanzania , 1988 .

[7]  M. Lockley,et al.  Ichnotaxonomy of the Laetoli trackways: The earliest hominin footprints , 2011 .

[8]  R. L. Susman,et al.  New first metatarsal (SKX 5017) from Swartkrans and the gait of Paranthropus robustus. , 1988, American journal of physical anthropology.

[9]  D. Meldrum Fossilized Hawaiian Footprints Compared with Laetoli Hominid Footprints , 2004 .

[10]  G. Berillon Assessing the longitudinal structure of the early hominid foot: A two-dimensional architecture analysis , 2003 .

[11]  R. Alexander,et al.  Characteristics of ground reaction forces in normal and chimpanzee-like bipedal walking by humans. , 1996, Folia primatologica; international journal of primatology.

[12]  A. Minetti,et al.  A feedback-controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and running in humans. , 2003, Journal of applied physiology.

[13]  K. Desloovere,et al.  Inter- and intra-observer reliability of masking in plantar pressure measurement analysis. , 2009, Gait & posture.

[14]  J. Y. Goulermas,et al.  A comparison of seven methods of within-subjects rigid-body pedobarographic image registration. , 2008, Journal of biomechanics.

[15]  S. Larson,et al.  The foot of Homo floresiensis , 2009, Nature.

[16]  J. R. Allen,et al.  Subfossil mammalian tracks (Flandrian) in the Severn Estuary, S. W. Britain: mechanics of formation, preservation and distribution , 1997 .

[17]  R. Crompton,et al.  The mechanical effectiveness of erect and "bent-hip, bent-knee" bipedal walking in Australopithecus afarensis. , 1998, Journal of human evolution.

[18]  Daniel J. Proctor Brief Communication: Shape analysis of the MT 1 proximal articular surface in fossil hominins and shod and unshod Homo. , 2010, American journal of physical anthropology.

[19]  T. Kubo Estimating body weight from footprints: Application to pterosaurs , 2011 .

[20]  J. DeSilva,et al.  Lucy's Flat Feet: The Relationship between the Ankle and Rearfoot Arching in Early Hominins , 2010, PloS one.

[21]  Todd C Pataky,et al.  Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. , 2010, Journal of biomechanics.

[22]  T. White,et al.  Hominid footprints at Laetoli: facts and interpretations. , 1987, American journal of physical anthropology.

[23]  Philip E. Martin,et al.  A Model of Human Muscle Energy Expenditure , 2003, Computer methods in biomechanics and biomedical engineering.

[24]  P. O'higgins,et al.  The OH8 foot: a reappraisal of the hindfoot utilising a multivariate analysis , 1994 .

[25]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[26]  M. H. Day,et al.  Hominid Fossils from Bed I, Olduvai Gorge, Tanganyika: Fossil Foot Bones , 1964, Nature.

[27]  L. Aiello,et al.  Fossils, feet and the evolution of human bipedal locomotion , 2004, Journal of anatomy.

[28]  M. Day,et al.  Fossil Foot Bones , 1965, Current Anthropology.

[29]  K. Milliken,et al.  CEMENTATION OF THE FOOTPRINT TUFF, LAETOLI, TANZANIA , 2008 .

[30]  J. Y. Goulermas,et al.  New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM). , 2008, Journal of biomechanics.

[31]  Neville Agnew,et al.  Preserving the Laetoli Footprints , 1998 .

[32]  V.R.S Mani,et al.  Survey of Medical Image Registration , 2013 .

[33]  Robin Huw Crompton,et al.  Arboreality, terrestriality and bipedalism , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  H. Pontzer,et al.  The Laetoli footprints and early hominin locomotor kinematics. , 2008, Journal of human evolution.

[35]  R. Lewin The pace of life , 1976, Nature.

[36]  R. F. Ker,et al.  The spring in the arch of the human foot , 1987, Nature.

[37]  David A. Raichlen,et al.  Laetoli Footprints Preserve Earliest Direct Evidence of Human-Like Bipedal Biomechanics , 2010, PloS one.

[38]  Kristiaan D'Août,et al.  Experimentally generated footprints in sand: Analysis and consequences for the interpretation of fossil and forensic footprints. , 2009, American journal of physical anthropology.

[39]  P. O'higgins,et al.  The OH8 foot : a reappraisal of the functional morphology of the hindfoot utilizing a multivariate analysis , 1996 .

[40]  R. M. Alexander,et al.  Stride length and speed for adults, children, and fossil hominids. , 1984, American journal of physical anthropology.

[41]  W. Sellers,et al.  Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors , 2005, Journal of The Royal Society Interface.

[42]  J. T. Stern,et al.  The locomotor anatomy of Australopithecus afarensis. , 1983, American journal of physical anthropology.

[43]  Brian G Richmond,et al.  Early Hominin Foot Morphology Based on 1.5-Million-Year-Old Footprints from Ileret, Kenya , 2009, Science.

[44]  R. Wunderlich Pedal form and plantar pressure distribution in anthropoid primates , 1999 .

[45]  D. Johanson,et al.  Complete Fourth Metatarsal and Arches in the Foot of Australopithecus afarensis , 2011, Science.

[46]  Hicks Jh The mechanics of the foot: II. The plantar aponeurosis and the arch , 1954 .

[47]  P. Aerts,et al.  Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). , 2002, American journal of physical anthropology.

[48]  P. Aerts,et al.  Scaling of plantar pressures in mammals , 2009 .

[49]  D R Carrier,et al.  Variable Gearing during Locomotion in the Human Musculoskeletal System Author(s) , 2022 .

[50]  H. Elftman,et al.  Chimpanzee and human feet in bipedal walking , 1935 .

[51]  Y. Li,et al.  Segment inertial properties of primates: new techniques for laboratory and field studies of locomotion. , 1996, American journal of physical anthropology.

[52]  A. Deino 40 Ar/ 39 Ar Dating of Laetoli, Tanzania , 2011 .

[53]  W. T. Dempster,et al.  SPACE REQUIREMENTS OF THE SEATED OPERATOR, GEOMETRICAL, KINEMATIC, AND MECHANICAL ASPECTS OF THE BODY WITH SPECIAL REFERENCE TO THE LIMBS , 1955 .

[54]  C. Lovejoy,et al.  Hominid tarsal, metatarsal, and phalangeal bones recovered from the Hadar Formation: 1974-1977 collections , 1982 .

[55]  R. Crompton,et al.  Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. , 2006, American journal of physical anthropology.

[56]  M. Bornstein,et al.  The pace of life , 1976, Nature.

[57]  A. Stacoff,et al.  Modelling of the passive mobility in human tarsal gears implications from the literature , 2004 .

[58]  Jeremy M. DeSilva,et al.  Revisiting the "midtarsal break". , 2009, American journal of physical anthropology.

[59]  G. Schwartz,et al.  Foot bones from Omo: implications for hominid evolution. , 2006, American journal of physical anthropology.

[60]  J. Y. Goulermas,et al.  A dynamic model of the windlass mechanism of the foot: evidence for early stance phase preloading of the plantar aponeurosis , 2009, Journal of Experimental Biology.

[61]  E. H. Wickens,et al.  Laetoli Pliocene hominid footprints and bipedalism , 1980, Nature.

[62]  K. D’Août,et al.  The effects of habitual footwear use: foot shape and function in native barefoot walkers , 2009 .

[63]  J. H. Hicks,et al.  The mechanics of the foot. II. The plantar aponeurosis and the arch. , 1954, Journal of anatomy.