Enhancing Model Predictability for a Scramjet Using Probabilistic Learning on Manifolds

The computational burden of a large-eddy simulation for reactive flows is exacerbated in the presence of uncertainty in flow conditions or kinetic variables. A comprehensive statistical analysis, w...

[1]  Jonathan Taylor,et al.  Statistical learning and selective inference , 2015, Proceedings of the National Academy of Sciences.

[2]  Dimitri N. Mavris,et al.  A Bayesian Approach to Non-Deterministic Hypersonic Vehicle Design , 2001 .

[3]  Guilhem Lacaze,et al.  Analysis of high-pressure Diesel fuel injection processes using LES with real-fluid thermodynamics and transport , 2013 .

[4]  Mark Gruber,et al.  Mach 6–8+ Hydrocarbon-Fueled Scramjet Flight Experiment: The HIFiRE Flight 2 Project , 2015 .

[5]  Todd Barhorst,et al.  The HIFiRE Flight 2 Experiment: An Overview and Status Update , 2009 .

[6]  Jorge Nocedal,et al.  On the Use of Stochastic Hessian Information in Optimization Methods for Machine Learning , 2011, SIAM J. Optim..

[7]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[8]  Volker Ulbricht,et al.  On boundary conditions for homogenization of volume elements undergoing localization , 2018 .

[9]  Mark Gruber,et al.  HIFiRE Flight 2 Project Overview and Status Update 2011 , 2011 .

[10]  Harsha K. Chelliah,et al.  Explicit reduced reaction models for ignition, flame propagation, and extinction of C2H4/CH4/H2 and air systems , 2007 .

[11]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[12]  Joseph C. Oefelein,et al.  Large eddy simulation of turbulent combustion processes in propulsion and power systems , 2006 .

[13]  Jack P. C. Kleijnen,et al.  Constrained optimization in expensive simulation: Novel approach , 2010, Eur. J. Oper. Res..

[14]  H. Luo,et al.  Dynamic Learning Rate Neural Network Training and Composite Structural Damage Detection , 1997 .

[15]  Xun Huan,et al.  Multifidelity Statistical Analysis of Large Eddy Simulations in Scramjet Computations , 2018 .

[16]  Charu C. Aggarwal,et al.  Mining Text Data , 2012, Springer US.

[17]  Andy J. Keane,et al.  Statistical Improvement Criteria for Use in Multiobjective Design Optimization , 2006 .

[18]  Roger G. Ghanem,et al.  Data-driven probability concentration and sampling on manifold , 2016, J. Comput. Phys..

[19]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[20]  Tito Homem-de-Mello,et al.  Monte Carlo sampling-based methods for stochastic optimization , 2014 .

[21]  J. Oefelein Simulation and analysis of turbulent multiphase combustion processes at high pressures , 1997 .

[22]  Houman Owhadi,et al.  Handbook of Uncertainty Quantification , 2017 .

[23]  Michel van Tooren,et al.  Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles , 2011 .

[24]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[25]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[26]  Jiwen Liu,et al.  Combustor Operability and Performance Verification for HIFiRE Flight 2 , 2011 .

[27]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[28]  Maria-Florina Balcan,et al.  Statistical Active Learning Algorithms , 2013, NIPS.

[29]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Xiaoping Du,et al.  Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design , 2004, DAC 2002.

[31]  Arnak S. Dalalyan,et al.  Sparse Regression Learning by Aggregation and Langevin Monte-Carlo , 2009, COLT.

[32]  Gianluca Geraci,et al.  A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications , 2017 .

[33]  Xun Huan,et al.  Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations , 2017, 1707.09478.

[34]  Lloyd G. Wilson,et al.  Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air , 2007 .

[35]  Javier Urzay,et al.  Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight , 2018 .

[36]  Christian Soize,et al.  Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices , 2008 .

[37]  David H. Wolpert,et al.  Using Supervised Learning to Improve Monte Carlo Integral Estimation , 2011, ArXiv.

[38]  Neal Hass,et al.  HIFIRE DIRECT-CONNECT RIG (HDCR) PHASE I GROUND TEST RESULTS FROM THE NASA LANGLEY ARC-HEATED SCRAMJET TEST FACILITY , 2009 .

[39]  Karthik Duraisamy,et al.  Machine Learning-augmented Predictive Modeling of Turbulent Separated Flows over Airfoils , 2016, ArXiv.

[40]  Srinivas Kodiyalam,et al.  Neural network approximator with novel learning scheme for design optimization with variable complexity data , 1997 .

[41]  H. Elman,et al.  DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS , 2008 .

[42]  Christian Soize,et al.  Polynomial Chaos Expansion of a Multimodal Random Vector , 2015, SIAM/ASA J. Uncertain. Quantification.

[43]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[44]  Johan Larsson,et al.  Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet , 2014, J. Comput. Phys..

[45]  Douglas J. Dolvin,et al.  Hypersonic International Flight Research and Experimentation Technology Development and Flight Certification Strategy , 2009 .

[46]  Guilhem Lacaze,et al.  Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes. , 2014 .

[47]  C. Law,et al.  A directed relation graph method for mechanism reduction , 2005 .

[48]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[49]  Joseph C. Oefelein,et al.  Toward Validation of Large Eddy Simulation for Turbulent Combustion , 2006 .

[50]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[51]  Neal E. Hass,et al.  HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility , 2011 .

[52]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[53]  Peter I. Frazier,et al.  Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs , 2016, Oper. Res..

[54]  Nando de Freitas,et al.  Bayesian Optimization in a Billion Dimensions via Random Embeddings , 2013, J. Artif. Intell. Res..

[55]  Stephan Staudacher,et al.  Uncertainty quantification of a generic scramjet engine using a probabilistic collocation and a hybrid approach , 2018, CEAS Aeronautical Journal.

[56]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[57]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[58]  Karthik Duraisamy,et al.  Uncertainty quantification and error estimation in scramjet simulation , 2011 .

[59]  Douglas J. Dolvin,et al.  Hypersonic International Flight Research and Experimentation (HIFiRE) Fundamental Sciences and Technology Development Strategy , 2008 .