Cracking behavior of FRC slabs with traditional reinforcement

The combination of fibers with traditional reinforcement may be a very interesting design solution to achieve more durable and economical structures. This paper deals with the analysis of the aforementioned solution through the study at serviceability and ultimate limit states. For this purpose, a total of eighteen concrete slabs were produced (3 × 1 × 0.2 m) with different reinforcement configurations, types of fibers (steel and plastic) and the fiber dosage used (0.25 and 0.50%). These slabs were tested under the configuration of a four point bending test. The results of this experimental campaign were used in the study of the cracking and deflection of the various types of concrete, tackling the analysis from several points of view.

[1]  Paulo Cachim,et al.  Fatigue behavior of fiber-reinforced concrete in compression , 2002 .

[2]  Seng-Lip Lee,et al.  Crack Control in Beams Using Deformed Wire Fabric , 1989 .

[3]  I. Marković,et al.  High-Performance Hybrid-Fibre Concrete: Development and Utilisation , 2006 .

[4]  Surendra P. Shah,et al.  Fiber-Reinforced Cement Composites , 1992 .

[5]  Mazin Burhan Adeen,et al.  Determination of Mechanical Properties of Hybrid Steel-Nylon Fiber Reinforced Concrete , 2010 .

[6]  Joaquim Figueiras,et al.  Experimental behaviour of fibre concrete slabs on soil , 1998 .

[7]  Fatih Altun,et al.  A comparative experimental investigation of concrete, reinforced-concrete and steel-fibre concrete pipes under three-edge-bearing test , 2007 .

[8]  Lucie Vandewalle,et al.  Fibre reinforced concrete: new design perspectives , 2009 .

[9]  W. Brameshuber,et al.  Analytical evaluation of pull-out tests- : The inverse problem , 2006 .

[10]  H. Marzouk,et al.  A New Formula to Calculate Crack Spacing for Concrete Plates , 2010 .

[11]  Lucie Vandewalle,et al.  Test and design methods for steel fiber reinforced concrete , 2000 .

[12]  Aurelio Muttoni,et al.  Fédération Internationale du Béton (fib), Model Code 2010 - First complete draft, chapters 7.3 and 7.13 , 2010 .

[13]  B. Barragán,et al.  Failure and toughness of steel fiber reinforced concrete under tension and shear , 2002 .

[14]  Peter H. Bischoff,et al.  Tension Stiffening and Cracking of Steel Fiber-Reinforced Concrete , 2003 .

[15]  A W Beeby,et al.  CONCISE EUROCODE FOR THE DESIGN OF CONCRETE BUILDINGS. BASED ON BSI PUBLICATION DD ENV 1992-1-1: 1992. EUROCODE 2: DESIGN OF CONCRETE STRUCTURES. PART 1: GENERAL RULES AND RULES FOR BUILDINGS , 1993 .

[16]  L. Vandewalle Postcracking behaviour of hybrid steel fiber reinforced concrete , 2007 .

[17]  Kiang Hwee Tan,et al.  Cracking characteristics of reinforced steel fiber concrete beams under short- and long-term loadings , 1995 .

[18]  Filipe Laranjeira de Oliveira Design-oriented constitutive model for steel fiber reinforced concrete , 2010 .

[19]  Davide Zampini,et al.  Microfiber and Macrofiber Hybrid Fiber-Reinforced Concrete , 2005 .

[20]  M. Konsta-Gdoutos Measuring, Monitoring and Modeling Concrete Properties , 2006 .

[21]  Simon A. Austin,et al.  Predicting the flexural load–deflection response of steel fibre reinforced concrete from strain, crack-width, fibre pull-out and distribution data , 2008 .

[22]  R. N. Swamy,et al.  Stress-Strain Behavior of Steel Fiber-Reinforced Concrete in Compression , 2008 .

[23]  Ana Blanco Álvarez Durabilidad del hormigón con fibras de acero , 2008 .

[24]  Surendra P. Shah,et al.  FRACTURE TOUGHNESS OF FIBER REINFORCED CONCRETE , 1991 .

[25]  Climent Molins,et al.  Double Punch Test to control the energy dissipation in tension of FRC (Barcelona test) , 2009 .

[26]  Antonio Aguado de Cea,et al.  Modelo numérico para el análisis no lineal de secciones prefabricadas construidas evolutivamente , 2008 .

[27]  Lucie Vandewalle,et al.  Dispersion of the mechanical properties of FRC investigated by different bending tests , 2008 .

[28]  Antonio Aguado de Cea,et al.  Análisis comparativo de los modelos constitutivos del hormigón reforzado con fibras , 2010 .

[29]  Joaquim A. O. Barros,et al.  Post-cracking behaviour of steel fibre reinforced concrete , 2003 .

[30]  P. N. Raghunath,et al.  Ductility Performance of Hybrid Fibre Reinforced Concrete , 2008 .

[31]  P. Serna,et al.  Structural cast-in-place SFRC: technology, control criteria and recent applications in spain , 2009 .

[32]  Experimental behavior of mesh reinforced shotcrete and steel fiber reinforced shotcrete panels , 1998 .

[33]  J. Barros,et al.  Comportamento do betão reforçado com fibras : análise experimental e simulação numérica , 1995 .

[34]  Bernardino Chiaia,et al.  Evaluation of minimum reinforcement ratio in FRC members and application to tunnel linings , 2007 .

[35]  Surendra P. Shah,et al.  Use of a Crack‐Bridging Single‐Fiber Pullout Test to Study Steel Fiber/Cementitious Matrix Composites , 2004 .

[36]  Lucie Vandewalle,et al.  Cracking behaviour of concrete beams reinforced with a combination of ordinary reinforcement and steel fibers , 2000 .

[37]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[38]  Giovanni Plizzari,et al.  Considerazioni a margine del CNR-DT 204/2006: Istruzioni per la progettazione, l’esecuzione ed il controllo di strutture di calcestruzzo fibrorinforzato , 2006 .

[39]  Alberto Meda,et al.  Steel Fiber Concrete Slabs on Ground: A Structural Matter , 2006 .

[40]  Joaquim Figueiras,et al.  Flexural Behavior of SFRC: Testing and Modeling , 1999 .

[41]  Bernardino Chiaia,et al.  Evaluation of crack width in FRC structures and application to tunnel linings , 2009 .

[42]  Antoine E. Naaman,et al.  Pullout Response of a Smooth Fiber with an End Anchorage , 2000 .

[43]  Mohamed H. Harajli,et al.  Bond-slip Response of Reinforcing Bars Embedded in Plain and Fiber Concrete , 2002 .

[44]  Chunxiang Qian,et al.  Development of hybrid polypropylene-steel fibre-reinforced concrete , 2000 .