A proof-theoretic analysis of collection
暂无分享,去创建一个
[1] Petr Hájek,et al. Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.
[2] C. Parsons. Hierarchies of Primitive Recursive Functions , 1968 .
[3] Jeff B. Paris,et al. A Hierarchy of Cuts in Models of Arithmetic , 1980 .
[4] Daniel Leivant,et al. The optimality of induction as an axiomatization of arithmetic , 1983, Journal of Symbolic Logic (JSL).
[5] Lev D. Beklemishev,et al. Induction Rules, Reflection Principles, and Provably Recursive Functions , 1995, Ann. Pure Appl. Log..
[6] Albert Visser,et al. The formalization of Interpretability , 1991, Stud Logica.
[7] S. Cook. Computational complexity of higher type functions , 1990 .
[8] Joseph R. Shoenfield,et al. Mathematical logic , 1967 .
[9] Wilfried Sieg,et al. Fragments of arithmetic , 1985, Ann. Pure Appl. Log..
[10] Petr Hájek,et al. On some formalized conservation results in arithmetic , 1990, Arch. Math. Log..
[11] Jeff B. Paris,et al. On parameter free induction schemas , 1988, Journal of Symbolic Logic.
[12] Lev D. Beklemishev. Notes on local reflection principles , 1995 .
[13] Georg Kreisel,et al. Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .
[14] Albert Visser. The unprovability of small inconsistency , 1993, Arch. Math. Log..
[15] S. Feferman. Arithmetization of metamathematics in a general setting , 1959 .
[16] Hiroakira Ono,et al. Reflection Principles in Fragments of Peano Arithmetic , 1987, Math. Log. Q..
[17] Charles D. Parsons,et al. On n-quantifier induction , 1972, Journal of Symbolic Logic.
[18] C. Parsons. On a Number Theoretic Choice Schema and its Relation to Induction , 1970 .