Investigation of the heat energy and multi‐level load on subsurface fatigue damage evolution via multi‐scale method

[1]  Wei Li,et al.  A rolling contact fatigue health prediction model based on load interaction and damage energy accumulation , 2022, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.

[2]  F. Zhu,et al.  FEM simulation of thermo-mechanical stress and thermal fatigue life assessment of high-speed steel work rolls during hot strip rolling process , 2022 .

[3]  C. Schweizer,et al.  Investigation of damage mechanisms and short fatigue crack growth during thermomechanical fatigue loading of the nickel‐based superalloy Inconel 100 , 2022, Fatigue & Fracture of Engineering Materials & Structures.

[4]  Qingyuan Wang,et al.  Effects of local microstructure on crack initiation in super martensitic stainless steel under very-high-cycle fatigue , 2022, International Journal of Fatigue.

[5]  Weiguo Li,et al.  Modeling the temperature dependence of fatigue strength of metallic materials , 2022, International Journal of Fatigue.

[6]  T. Seifert,et al.  Microstructure-sensitive finite-element analysis of crack-tip opening displacement and crack closure for microstructural short fatigue cracks , 2022, International Journal of Fatigue.

[7]  P. Mei,et al.  Influence of the microstructure on the rolling contact fatigue of rail steel: Spheroidized pearlite and fully pearlitic microstructure analysis , 2022, Wear.

[8]  C. F. Niordson,et al.  On the effect of microplasticity on crack initiation from subsurface defects in rolling contact fatigue , 2022, International Journal of Fatigue.

[9]  P. Sainsot,et al.  Towards a grain-scale modeling of crack initiation in rolling contact fatigue – Part 1: Shear stress considerations , 2021 .

[10]  Yasumoto Sato,et al.  Assessment of remaining fatigue life based on temperature-evolution measurements , 2021, Nondestructive Testing and Evaluation.

[11]  Xin Wang,et al.  Multiaxial fatigue life prediction for metals by means of an improved strain energy density-based critical plane criterion , 2021 .

[12]  Y. Sano,et al.  Fatigue Failure Analysis for Bimetallic Work Roll in Hot Strip Mills , 2021, steel research international.

[13]  Zhengwei Chen,et al.  A method for predicting subsurface fatigue life of rolling bearings based on macro–micro coupling model , 2021 .

[14]  G. Morales-Espejel,et al.  A model for rolling bearing life with surface and subsurface survival: Surface thermal effects , 2020 .

[15]  T. Kirste,et al.  Ultrasonic fatigue testing of cast steel G42CrMo4 at elevated temperatures , 2020 .

[16]  M. Enoki,et al.  Nucleation and propagation modeling of short fatigue crack in rolled bi-modal Ti–6Al–4V alloy , 2020 .

[17]  R. Souza,et al.  The influence of rolling mill process parameters on roll thermal fatigue , 2019, The International Journal of Advanced Manufacturing Technology.

[18]  J. Szusta Low cycle fatigue of metallic materials under uniaxialloading at elevated temperature , 2018, International Journal of Fatigue.

[19]  G. H. Majzoobi,et al.  An investigation into the effect of elevated temperatures on fretting fatigue response under cyclic normal contact loading , 2018 .

[20]  Ali Esmaeili,et al.  A methodology to predict thermomechanical cracking of railway wheel treads: From experiments to numerical predictions , 2017 .

[21]  S. C. Wu,et al.  Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc , 2016 .

[22]  Parisa Hosseini Tehrani,et al.  Thermal load effects on fatigue life of a cracked railway wheel , 2015 .

[23]  Xiaofeng Qin,et al.  Subsurface Rolling Contact Fatigue Damage Distribution of Backup Roll After Periodic Dressing , 2014, Journal of Failure Analysis and Prevention.

[24]  H. Jafari,et al.  Premature failure analysis of forged cold back-up roll in a continuous tandem mill , 2011 .

[25]  Liguo Zhao,et al.  A crystal plasticity study of cyclic constitutive behaviour, crack-tip deformation and crack-growth path for a polycrystalline nickel-based superalloy , 2011 .

[26]  Z. Yue,et al.  Low cycle fatigue behavior of single crystal superalloy with temperature gradient , 2010 .

[27]  D. Fang,et al.  The temperature-dependent fracture strength model for ultra-high temperature ceramics , 2010 .

[28]  Fredrik Larsson,et al.  A study of multiple crack interaction at rolling contact fatigue loading of rails , 2009 .

[29]  Rodrigue Desmorat,et al.  Two scale damage model and related numerical issues for thermo-mechanical High Cycle Fatigue , 2007 .

[30]  Enomoto Kunio,et al.  Effect of preliminary surface working on fatigue strength of type 304 stainless steel at ambient temperature and 288 °C in air and pure water environment , 2006 .

[31]  Jonas W. Ringsberg,et al.  Rolling contact fatigue analysis of rails inculding numerical simulations of the rail manufacturing process and repeated wheel-rail contact loads , 2003 .

[32]  I. Prebil,et al.  Low-cycle fatigue properties of steel 42CrMo4 , 2003 .

[33]  Jonas W. Ringsberg,et al.  Life prediction of rolling contact fatigue crack initiation , 2001 .

[34]  T. Cruse,et al.  A reliability-based model to predict scatter in fatigue crack nucleation life , 1998 .

[35]  Y. Murakami,et al.  Effects of defects, inclusions and inhomogeneities on fatigue strength , 1994 .

[36]  Toshio Mura,et al.  A Theory of Fatigue Crack Initiation , 1994 .

[37]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[38]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[39]  Hongtao Zhu,et al.  Thermo-mechanical coupled finite element analysis of rolling contact fatigue and wear properties of a rail steel under different slip ratios , 2020 .

[40]  K. Tanaka,et al.  A theory of fatigue crack initiation at inclusions , 1982 .

[41]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[42]  A. Palmgren Die Lebensdauer von Kugellargern , 1924 .