Tracking Control for Nanopositioning Systems

The performance of nanopositioning systems is greatly affected by their mechanical dynamics, and for piezo-actuated designs, induced structural vibration, hysteresis, and creep can drastically limit positioning precision. Therefore, tracking control, both feedback and feedforward control, plays an important role in achieving high-performance operation, especially at high operating frequencies. This chapter reviews popular feedback and feedforward control techniques for nanopositioning systems. First, the effects of vibration, hysteresis, and creep are described, where simple methods traditionally employed to avoid these effects are discussed. Second, various models for nanopositioning systems for control system design, simulation, and synthesis are presented. Finally, popular feedback and feedforward controllers to handle vibration, hysteresis, and creep are presented, along with experimental results.

[1]  D.Y. Abramovitch,et al.  Semi-automatic tuning of PID gains for Atomic Force Microscopes , 2008, 2008 American Control Conference.

[2]  A. Fleming,et al.  A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners , 2005 .

[3]  Yang Li,et al.  Feedforward control of a piezoelectric flexure stage for AFM , 2008, 2008 American Control Conference.

[4]  Filip Braet,et al.  Noncontact versus contact imaging: An atomic force microscopic study on hepatic endothelial cells in vitro , 1997 .

[5]  Hartmut Janocha,et al.  Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .

[6]  H. Kaizuka,et al.  A Simple Way to Reduce Hysteresis and Creep When Using Piezoelectric Actuators , 1988 .

[7]  C. Quate,et al.  High-speed atomic force microscopy in liquid , 2000 .

[8]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[9]  K. R. Koops,et al.  Observation of zero creep in piezoelectric actuators , 1999 .

[10]  S O R Moheimani,et al.  Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. , 2012, The Review of scientific instruments.

[11]  A.J. Fleming Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control , 2010, IEEE/ASME Transactions on Mechatronics.

[12]  S. O. Reza Moheimani,et al.  High-Performance Control of Piezoelectric Tube Scanners , 2007, IEEE Transactions on Control Systems Technology.

[13]  M. Tomizuka,et al.  Digital control of repetitive errors in disk drive systems , 1990, IEEE Control Systems Magazine.

[14]  Joshua R. Smith,et al.  Model development and inverse compensator design for high speed nanopositioning , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[15]  D. Croft,et al.  Vibration compensation for high speed scanning tunneling microscopy , 1999 .

[16]  Mark Gee,et al.  Time dependent behaviour of piezo-electric materials. , 1999 .

[17]  Frank Allgöwer,et al.  Control Strategies Towards Faster Quantitative Imaging in Atomic Force Microscopy , 2005, Eur. J. Control.

[18]  Kam K. Leang,et al.  Design and Analysis of Discrete-Time Repetitive Control for Scanning Probe Microscopes , 2009 .

[19]  Kam K. Leang,et al.  Dual-stage repetitive control with Prandtl-Ishlinskii hysteresis inversion for piezo-based nanopositioning , 2012 .

[20]  Kam K. Leang,et al.  Accounting for hysteresis in repetitive control design: Nanopositioning example , 2012, Autom..

[21]  Kam K. Leang,et al.  Flexure design using metal matrix composite materials: Nanopositioning example , 2012, 2012 IEEE International Conference on Robotics and Automation.

[22]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[23]  Qinmin Yang,et al.  Atomic force microscope-based nanomanipulation with drift compensation , 2006 .

[24]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[25]  Santosh Devasia,et al.  High-Speed Scanning of Piezo-Probes for Nano-Fabrication , 1997, Manufacturing Science and Engineering: Volume 2.

[26]  Santosh Devasia,et al.  Should model-based inverse inputs be used as feedforward under plant uncertainty? , 2002, IEEE Trans. Autom. Control..

[27]  Harvey Thomas Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation , 1997 .

[28]  Daisuke Maruyama,et al.  A High-Speed Atomic Force Microscope for Studying Biological Macromolecules in Action , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  Hewon Jung,et al.  New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep , 2000 .

[30]  S. O. Reza Moheimani,et al.  Integral resonant control of collocated smart structures , 2007 .

[31]  Ephrahim Garcia,et al.  Precision position control of piezoelectric actuators using charge feedback , 1995 .

[32]  Sumeet S Aphale,et al.  A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages , 2010, IEEE Transactions on Nanotechnology.

[33]  Yong Li,et al.  Motion control of an electrostrictive actuator , 2004 .

[34]  A. E. Holman,et al.  Analysis of piezo actuators in translation constructions , 1995 .

[35]  Q. Zou,et al.  A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging. , 2009, The Review of scientific instruments.

[36]  Andrew J. Fleming,et al.  Design, Modeling and Control of Nanopositioning Systems , 2014 .

[37]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[38]  Paul K. Hansma,et al.  Design and input-shaping control of a novel scanner for high-speed atomic force microscopy , 2008 .

[39]  Yang Li,et al.  Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope. , 2007, The Review of scientific instruments.

[40]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[41]  Jayati Ghosh,et al.  A pseudoinverse-based iterative learning control , 2002, IEEE Trans. Autom. Control..

[42]  S. S. Aphale,et al.  High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties , 2008, Nanotechnology.

[43]  S O Reza Moheimani,et al.  Making a commercial atomic force microscope more accurate and faster using positive position feedback control. , 2009, The Review of scientific instruments.

[44]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[45]  Santosh Devasia,et al.  Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes , 2006 .

[46]  B. Paden,et al.  Nonlinear inversion-based output tracking , 1996, IEEE Trans. Autom. Control..

[47]  Chia-Hsiang Menq,et al.  Hysteresis compensation in electromagnetic actuators through Preisach model inversion , 2000 .

[48]  Santosh Devasia,et al.  Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.

[49]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[50]  M.V. Salapaka,et al.  Scanning Probe Microscopy , 2008, IEEE Control Systems.

[51]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[52]  Andrew J. Fleming,et al.  Evaluation of charge drives for scanning probe microscope positioning stages , 2008, ACC.

[53]  A. Sebastian,et al.  Two-sensor-based H∞control for nanopositioning in probe storage , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[54]  M Maarten Steinbuch,et al.  Directional Repetitive Control of a Metrological AFM , 2011 .

[55]  Qingze Zou,et al.  Model-less inversion-based iterative control for output tracking: Piezo actuator example , 2008, 2008 American Control Conference.

[56]  S. Bashash,et al.  Robust Adaptive Control of Coupled Parallel Piezo-Flexural Nanopositioning Stages , 2009, IEEE/ASME Transactions on Mechatronics.

[57]  Suhada Jayasuriya,et al.  Feedforward Controllers and Tracking Accuracy in the Presence of Plant Uncertainties , 1995 .

[58]  A. J. Helmicki,et al.  An H/sub /spl infin// based controller for a gas turbine clearance control system , 1995, Proceedings of International Conference on Control Applications.

[59]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[60]  Andrew J. Fleming,et al.  Precision current and charge amplifiers for driving highly capacitive piezoelectric loads , 2003 .

[61]  Hewon Jung,et al.  Creep characteristics of piezoelectric actuators , 2000 .

[62]  Hans D. Hallen,et al.  Quantitative method of image analysis when drift is present in a scanning probe microscope , 2003 .

[63]  Chun-Yi Su,et al.  Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .

[64]  M Maarten Steinbuch,et al.  Modeling of a walking piezo actuator , 2010 .

[65]  Qingze Zou,et al.  Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation , 2005, IEEE Transactions on Control Systems Technology.

[66]  Hartmut Janocha,et al.  Compensation of hysteresis in solid-state actuators , 1995 .

[67]  R. Merry,et al.  Using a Walking Piezo Actuator to Drive and Control a High-Precision Stage , 2009, IEEE/ASME Transactions on Mechatronics.

[68]  Anthony G. Evans,et al.  Nonlinear Deformation of Ferroelectric Ceramics , 1993 .

[69]  Aristides A. G. Requicha,et al.  Drift compensation for automatic nanomanipulation with scanning probe microscopes , 2006, IEEE Transactions on Automation Science and Engineering.

[70]  S. O. Reza Moheimani,et al.  Sensor fusion for improved control of piezoelectric tube scanners , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[71]  Santosh Devasia,et al.  High-speed solution switching using piezo-based micropositioning stages , 2001, IEEE Transactions on Biomedical Engineering.

[72]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[73]  Toshio Ando,et al.  Active damping of the scanner for high-speed atomic force microscopy , 2005 .

[74]  Kam K. Leang,et al.  Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures , 1998 .

[75]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[76]  John T. Woodward,et al.  Removing drift from scanning probe microscope images of periodic samples , 1998 .

[77]  Georg Schitter,et al.  Fast closed loop control of piezoelectric transducers , 2002 .

[78]  Andrew J. Fleming,et al.  Optimal Periodic Trajectories for Band-Limited Systems , 2009, IEEE Transactions on Control Systems Technology.

[79]  V. Yurov,et al.  Scanning tunneling microscope calibration and reconstruction of real image: Drift and slope elimination , 1994 .

[80]  F. Allgower,et al.  Robust 2 DOF-control of a piezoelectric tube scanner for high speed atomic force microscopy , 2003, Proceedings of the 2003 American Control Conference, 2003..

[81]  K. Youcef-Toumi,et al.  Creep in piezoelectric scanners of atomic force microscopes , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[82]  B. D. Coleman,et al.  A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .

[83]  Santosh Devasia,et al.  Image-based compensation of dynamic effects in scanning tunnelling microscopes , 2005 .

[84]  Qingze Zou,et al.  A review of feedforward control approaches in nanopositioning for high-speed spm , 2009 .

[85]  S. S. Aphale,et al.  High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control , 2007 .

[86]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[87]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[88]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[89]  Qingze Zou,et al.  Robust Inversion-Based 2-DOF Control Design for Output Tracking: Piezoelectric-Actuator Example , 2009, IEEE Transactions on Control Systems Technology.

[90]  Claudio Nicolini,et al.  Drift elimination in the calibration of scanning probe microscopes , 1995 .

[91]  Srinivasa M. Salapaka,et al.  Robust MIMO control of a parallel kinematics nano-positioner for high resolution high bandwidth tracking and repetitive tasks , 2007, 2007 46th IEEE Conference on Decision and Control.

[92]  R. Barrett,et al.  Optical scan‐correction system applied to atomic force microscopy , 1991 .

[93]  S.O.R. Moheimani,et al.  PVPF control of piezoelectric tube scanners , 2007 .

[94]  Karl Johan Åström,et al.  Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.

[95]  Richard J. Colton,et al.  EFFECT OF PZT AND PMN ACTUATOR HYSTERESIS AND CREEP ON NANOINDENTATION MEASUREMENTS USING FORCE MICROSCOPY , 1994 .

[96]  Santosh Devasia,et al.  Inverse-feedforward of charge-controlled piezopositioners , 2008 .

[97]  John A. Main,et al.  Piezoelectric Stack Actuators and Control System Design: Strategies and Pitfalls , 1997 .

[98]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[99]  K. Furutani,et al.  Displacement control of piezoelectric element by feedback of induced charge , 1998 .

[100]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[101]  Eduardo Bayo,et al.  A finite-element approach to control the end-point motion of a single-link flexible robot , 1987, J. Field Robotics.

[102]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[103]  Tadahiro Hasegawa,et al.  Modeling of shape memory alloy actuator and tracking control system with the model , 2001, IEEE Trans. Control. Syst. Technol..

[104]  Qingze Zou,et al.  Iterative Control Approach to Compensate for Both the Hysteresis and the Dynamics Effects of Piezo Actuators , 2007, IEEE Transactions on Control Systems Technology.

[105]  Qingze Zou,et al.  Preview-Based Stable-Inversion for Output Tracking of Linear Systems , 1999 .

[106]  John S. Baras,et al.  Adaptive identification and control of hysteresis in smart materials , 2005, IEEE Transactions on Automatic Control.

[107]  Yuichi Okazaki,et al.  A micro-positioning tool post using a piezoelectric actuator for diamond turning machines , 1990 .

[108]  K.K. Leang,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.090 HIGH-SPEED SERIAL-KINEMATIC SPM SCANNER: DESIGN AND DRIVE CONSIDERATIONS , 2022 .

[109]  Siep Weiland,et al.  Design of noise and period-time robust high-order repetitive control, with application to optical storage , 2007, Autom..

[110]  Murti V. Salapaka,et al.  Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[111]  Qingze Zou,et al.  Preview-based stable-inversion for output tracking , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[112]  Ho‐Jun Lee,et al.  The Effect of Temperature Dependent Material Properties on the Response of Piezoelectric Composite Materials , 1998 .

[113]  Qingze Zou,et al.  Preview-based optimal inversion for output tracking: application to scanning tunneling microscopy , 2004, IEEE Transactions on Control Systems Technology.