Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype

[1]  B. Kreike,et al.  Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis , 2009, Breast Cancer Research and Treatment.

[2]  C. Perou,et al.  Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  T. Tomasi,et al.  Dicer is regulated by cellular stresses and interferons. , 2009, Molecular immunology.

[4]  Adrian V. Lee,et al.  Molecular profiles of progesterone receptor loss in human breast tumors , 2009, Breast Cancer Research and Treatment.

[5]  Min Zhang,et al.  TGF-β1 Induces Human Bronchial Epithelial Cell-to-Mesenchymal Transition in Vitro , 2009, Lung.

[6]  Jan-Fang Cheng,et al.  Dicer, Drosha, and outcomes in patients with ovarian cancer. , 2008, The New England journal of medicine.

[7]  Masato Nagino,et al.  let-7 regulates Dicer expression and constitutes a negative feedback loop. , 2008, Carcinogenesis.

[8]  F. Slack,et al.  The let-7 family of microRNAs. , 2008, Trends in cell biology.

[9]  Margaret Sutcliffe,et al.  Epithelial–mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[10]  Joshua J. Forman,et al.  A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence , 2008, Proceedings of the National Academy of Sciences.

[11]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[12]  A. Puisieux,et al.  Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition , 2008, PloS one.

[13]  J. Lawrence,et al.  Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells , 2008, The Journal of cell biology.

[14]  Jae Hoon Kim,et al.  MicroRNA Expression Profiles in Serous Ovarian Carcinoma , 2008, Clinical Cancer Research.

[15]  Zihua Hu,et al.  MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. , 2008, Molecular immunology.

[16]  M. Loda,et al.  Altered eIF6 and Dicer expression is associated with clinicopathological features in ovarian serous carcinoma patients , 2008, Modern Pathology.

[17]  I. Ellis,et al.  The influence of basal phenotype on the metastatic pattern of breast cancer. , 2008, Clinical oncology (Royal College of Radiologists (Great Britain)).

[18]  A. Ferguson-Smith,et al.  Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes , 2008, Nature Genetics.

[19]  Leonard D. Goldstein,et al.  MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype , 2007, Genome Biology.

[20]  Shannon Amoils,et al.  The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells , 2007, Genome Biology.

[21]  F. Slack,et al.  The let-7 microRNA represses cell proliferation pathways in human cells. , 2007, Cancer research.

[22]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[23]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[24]  T. Xie,et al.  Dcr-1 Maintains Drosophila Ovarian Stem Cells , 2007, Current Biology.

[25]  Simion I. Chiosea,et al.  Overexpression of Dicer in precursor lesions of lung adenocarcinoma. , 2007, Cancer research.

[26]  Y. Fujii,et al.  RNASEN Regulates Cell Proliferation and Affects Survival in Esophageal Cancer Patients , 2006, Clinical Cancer Research.

[27]  Wen-Lin Kuo,et al.  A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. , 2006, Cancer cell.

[28]  Rajiv Dhir,et al.  Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. , 2006, The American journal of pathology.

[29]  Tara L. Naylor,et al.  microRNAs exhibit high frequency genomic alterations in human cancer. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Brian S. Roberts,et al.  The colorectal microRNAome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  V. Kim,et al.  The role of PACT in the RNA silencing pathway , 2006, The EMBO journal.

[32]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[34]  P. Marsden,et al.  Extensive variation in the 5'-UTR of Dicer mRNAs influences translational efficiency. , 2005, Biochemical and biophysical research communications.

[35]  Oliver H. Tam,et al.  Characterization of Dicer-deficient murine embryonic stem cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[37]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[38]  Gautam Chaudhuri,et al.  Alternative initiation and splicing in dicer gene expression in human breast cells , 2005, Breast Cancer Research.

[39]  Risto Lehtonen,et al.  Multilevel Statistical Models , 2005 .

[40]  Shuta Tomida,et al.  Reduced expression of Dicer associated with poor prognosis in lung cancer patients , 2005, Cancer science.

[41]  W. Gerald,et al.  Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. , 2005, The Journal of clinical investigation.

[42]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[43]  G. Hannon,et al.  RNase III enzymes and the initiation of gene silencing , 2004, Nature Structural &Molecular Biology.

[44]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[45]  Z. Xie,et al.  Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation , 2003, Current Biology.

[46]  T. Lorca,et al.  Alterations of anaphase-promoting complex genes in human colon cancer cells , 2003, Oncogene.

[47]  G. Mundy Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities , 2002, Nature Reviews Cancer.

[48]  D. Ferrari Forward into terra incognita: Proteome and Protein Analysis , 2000 .

[49]  Elena Losina,et al.  An introduction to hierarchical linear modelling , 1999 .

[50]  I. Treilleux,et al.  A transcriptional enhancer required for the differential expression of the human estrogen receptor in breast cancers , 1997, Molecular and cellular biology.

[51]  F. Miller,et al.  Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. , 1992, Cancer research.

[52]  M. Stampfer,et al.  Growth of normal human mammary cells in culture , 1980, In Vitro.

[53]  M. Pike,et al.  Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. , 1977, British Journal of Cancer.

[54]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[55]  R. Baron,et al.  A convenient clinically relevant model of human breast cancer bone metastasis , 2007, Clinical & Experimental Metastasis.

[56]  V. Castronovo,et al.  Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells , 2006, Breast Cancer Research and Treatment.

[57]  Robin L. Anderson,et al.  MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits , 2004, Clinical & Experimental Metastasis.

[58]  W. Hahn,et al.  Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. , 2001, Genes & development.

[59]  L. Sullivan,et al.  Tutorial in biostatistics. An introduction to hierarchical linear modelling. , 1999, Statistics in medicine.

[60]  F. Miller,et al.  Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. , 1983, Invasion & metastasis.