Shut down of the South American summer monsoon during the penultimate glacial

[1]  E. Bard,et al.  Early Holocene Thermal Maximum recorded by branched tetraethers and pollen in Western Europe (Massif Central, France) , 2020, Quaternary Science Reviews.

[2]  J. Iriarte,et al.  A quantitative study of modern pollen–vegetation relationships in southern Brazil's Araucaria forest , 2019, Review of Palaeobotany and Palynology.

[3]  H. Behling,et al.  A new modern pollen dataset describing the Brazilian Atlantic Forest , 2019, The Holocene.

[4]  E. Bard,et al.  Western Mediterranean Sea Paleothermometry Over the Last Glacial Cycle Based on the Novel RI‐OH Index , 2019, Paleoceanography and Paleoclimatology.

[5]  S. Burns,et al.  Millennial and orbital scale variability of the South American Monsoon during the penultimate glacial period , 2019, Scientific Reports.

[6]  F. Cruz,et al.  Late Quaternary Variations in the South American Monsoon System as Inferred by Speleothems—New Perspectives using the SISAL Database , 2019, Quaternary.

[7]  M. England,et al.  Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise , 2018, Nature Communications.

[8]  E. Bard,et al.  The importance of mass accuracy in selected ion monitoring analysis of branched and isoprenoid tetraethers , 2018 .

[9]  A. Voelker,et al.  South American monsoon response to iceberg discharge in the North Atlantic , 2018, Proceedings of the National Academy of Sciences.

[10]  J. Russell,et al.  Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment : Effects of temperature, pH, and new lacustrine paleotemperature calibrations , 2018 .

[11]  H. Behling,et al.  Long-term vegetation, climate and ocean dynamics inferred from a 73,500 years old marine sediment core (GeoB2107-3) off southern Brazil , 2017 .

[12]  E. Latrubesse,et al.  The movement of pre-adapted cool taxa in north-central Amazonia during the last glacial , 2017 .

[13]  D. M. Gray,et al.  Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids , 2017 .

[14]  S. Mulitza,et al.  Prolonged warming of the Brazil Current precedes deglaciations , 2017 .

[15]  A. Grimm,et al.  The role of synoptic and intraseasonal anomalies on the life cycle of rainfall extremes over South America: non-summer conditions , 2017, Climate Dynamics.

[16]  D. Bourlès,et al.  Authigenic 10Be/9Be ratio signatures of the cosmogenic nuclide production linked to geomagnetic dipole moment variation since the Brunhes/Matuyama boundary , 2016, Journal of geophysical research. Solid earth.

[17]  Limin Hu,et al.  Ubiquitous production of branched glycerol dialkyl glycerol tetraethers(brGDGTs) in global marine environments: a new source indicator for brGDGTs , 2016 .

[18]  A. Coe,et al.  Drivers of ecosystem and climate change in tropical West Africa over the past ∼540 000 years , 2016 .

[19]  Stefan Schouten,et al.  The effect of improved chromatography on GDGT-based palaeoproxies , 2016 .

[20]  C. Hély,et al.  Long‐term Spatial Changes in the Distribution of the Brazilian Atlantic Forest , 2016 .

[21]  L. Löwemark,et al.  Testing commonly used X‐ray fluorescence core scanning‐based proxies for organic‐rich lake sediments and peat , 2016 .

[22]  Ke Zhang,et al.  Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change , 2015, Proceedings of the National Academy of Sciences.

[23]  E. Bard,et al.  Why deep drilling in the Colônia Basin (Brazil) , 2015 .

[24]  V. Rull,et al.  Updated site compilation of the Latin American Pollen Database , 2015 .

[25]  L. Lourens,et al.  Obliquity forcing of low-latitude climate , 2015 .

[26]  P. A. Baker,et al.  Nature and causes of Quaternary climate variation of tropical South America , 2015 .

[27]  A. Berger,et al.  Interglacial analogues of the Holocene and its natural near future , 2015 .

[28]  M. England,et al.  Obliquity Control On Southern Hemisphere Climate During The Last Glacial , 2015, Scientific Reports.

[29]  P. Gibbard,et al.  An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages , 2015 .

[30]  T. Litt,et al.  A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey) , 2014 .

[31]  Stefan Schouten,et al.  Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils : Implications for palaeoclimate reconstruction , 2014 .

[32]  M. Marques,et al.  Phylobetadiversity among Forest Types in the Brazilian Atlantic Forest Complex , 2014, PloS one.

[33]  C. Laj,et al.  Dynamics of the earth magnetic field in the 10-75 kyr period comprising the Laschamp and Mono Lake excursions: New results from the French Chaîne des Puys in a global perspective , 2014 .

[34]  L. Lourens,et al.  Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene , 2014, Nature Communications.

[35]  Robert M. Graham,et al.  Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis , 2013 .

[36]  Q. Hua,et al.  Atmospheric Radiocarbon for the Period 1950–2010 , 2013, Radiocarbon.

[37]  Philippe Martinez,et al.  Orbital-scale climate forcing of grassland burning in southern Africa , 2013, Proceedings of the National Academy of Sciences.

[38]  R. Edwards,et al.  Climate change patterns in Amazonia and biodiversity , 2013, Nature Communications.

[39]  E. Bard,et al.  An automated purification method for archaeal and bacterial tetraethers in soils and sediments , 2013 .

[40]  E. Hopmans,et al.  Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS , 2013 .

[41]  C. Buck,et al.  IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP , 2013, Radiocarbon.

[42]  K. Bennett,et al.  Neotropical refugia , 2012 .

[43]  C. Hillaire‐Marcel,et al.  Late Quaternary chronostratigraphic framework of deep Baffin Bay glaciomarine sediments from high‐resolution paleomagnetic data , 2012 .

[44]  A. Murray,et al.  A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments , 2012 .

[45]  R. Müller,et al.  Insights on the kinematics of the India‐Eurasia collision from global geodynamic models , 2012 .

[46]  M. Ledru,et al.  The Colônia structure, São Paulo, Brazil , 2011 .

[47]  J. Christen,et al.  Flexible paleoclimate age-depth models using an autoregressive gamma process , 2011 .

[48]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[49]  A. Grimm Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change , 2011 .

[50]  Norbert Mercier,et al.  Dose-rate conversion factors: update , 2011 .

[51]  R. L. Edwards,et al.  The Last Glacial Termination , 2010, Science.

[52]  J. Hansen,et al.  EPICA Dome C record of glacial and interglacial intensities , 2010 .

[53]  M. Kageyama,et al.  Sensitivity of South American Tropical Climate to Last Glacial Maximum Boundary Conditions: Focus on Teleconnections with Tropics and Extratropics , 2009 .

[54]  J. Marengo,et al.  Present-day South American climate , 2009 .

[55]  E. Bard,et al.  Migration of the subtropical front as a modulator of glacial climate , 2009, Nature.

[56]  D. Hodell,et al.  Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500) , 2009 .

[57]  M. Ledru,et al.  Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial , 2009 .

[58]  T. Stocker,et al.  High-resolution carbon dioxide concentration record 650,000–800,000 years before present , 2008, Nature.

[59]  A. Wintle,et al.  Dose response, thermal stability and optical bleaching of the 310 °C isothermal TL signal in quartz , 2007 .

[60]  Peter Kershaw,et al.  A complete pollen record of the last 230 ka from Lynch's Crater, north-eastern Australia , 2007 .

[61]  O. Spaargaren,et al.  Occurrence and distribution of tetraether membrane lipids in soils : Implications for the use of the TEX86 proxy and the BIT index , 2006 .

[62]  A. Tudhope,et al.  The reconstructed Indonesian warm pool sea surface temperatures from tree rings and corals: Linkages to Asian monsoon drought and El Niño-Southern Oscillation , 2006 .

[63]  S. Burns,et al.  Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems , 2006 .

[64]  J. Toggweiler,et al.  Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages , 2006 .

[65]  J. Marengo,et al.  ON THE HYDROLOGICAL CYCLE OF THE AMAZON BASIN: A HISTORICAL REVIEW AND CURRENT STATE-OF-THE-ART , 2006 .

[66]  R. G. Rothwell,et al.  ITRAX: description and evaluation of a new multi-function X-ray core scanner , 2006, Geological Society, London, Special Publications.

[67]  Simon L Lewis,et al.  Tropical forests and the changing earth system , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[68]  Mathias Vuille,et al.  Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil , 2005, Nature.

[69]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[70]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[71]  Stefan Schouten,et al.  A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids , 2004 .

[72]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[73]  A. Murray,et al.  The single aliquot regenerative dose protocol: potential for improvements in reliability , 2003 .

[74]  Yadvinder Malhi,et al.  Forests, carbon and global climate , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[75]  R. Garreaud,et al.  Cold Air Incursions over Subtropical South America: Mean Structure and Dynamics , 2000 .

[76]  G. Henderson,et al.  Evidence from U–Th dating against Northern Hemisphere forcing of the penultimate deglaciation , 2000, Nature.

[77]  G. Laslett,et al.  OPTICAL DATING OF SINGLE AND MULTIPLE GRAINS OF QUARTZ FROM JINMIUM ROCK SHELTER, NORTHERN AUSTRALIA: PART I, EXPERIMENTAL DESIGN AND STATISTICAL MODELS* , 1999 .

[78]  J. Jouzel,et al.  Glacial–interglacial changes in ocean surface conditions in the Southern Hemisphere , 1999, Nature.

[79]  J. Gomes,et al.  Precipitation Anomalies in Southern Brazil Associated with El Niño and La Niña Events , 1998 .

[80]  M. Aitken,et al.  An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence , 1998 .

[81]  C. Nobre,et al.  Cold Surges in Tropical and Extratropical South America: The Strong Event in June 1994 , 1997 .

[82]  W. Broecker,et al.  Cooling of Tropical Brazil (5�C) During the Last Glacial Maximum , 1995, Science.

[83]  K. Creer,et al.  Extension of the Lac du Bouchet palaeomagnetic record over the last 120,000 years , 1990 .

[84]  J. R. Prescott,et al.  The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependences , 1982 .

[85]  K. Faegri,et al.  Textbook of Pollen Analysis , 1965 .