Analysis of a shear-lag model with nonlinear elastic stress transfer for sequential cracking of polymer coatings

Analyzing a shear-lag model, the evolution of the fragment size distribution in the sequential cracking of polymer coatings under uniaxial loading is investigated. This study elucidates the role of a nonlinear elastic stress transfer mechanism at the interface on the fragmentation kinetics. Using a nonlinear expression for the shear stress at the interface, analytical expressions for the stress and the strain in the coating are derived. In the initial stage of cracking, the strain in a fragment equals the substrate's strain everywhere except in the exclusion zone at the fragments' edges. In the later stages of fragmentation, the stress and the strain in a fragment attain a universal scaling form with pronounced maxima in the centers of the fragments. Assuming a three parameter Weibull distribution for the statistical distribution of the coating's strength, analytical expressions for the fragment size distribution in the initial stage and numerical results for the fragment size distribution in the later stages of the cracking process are derived.

[1]  Benjamin Epstein,et al.  Statistical Aspects of Fracture Problems , 1948 .

[2]  B. Brookes,et al.  Statistical Theory of Extreme Values and Some Practical Applications , 1955, The Mathematical Gazette.

[3]  J. Gurland,et al.  Comparison of the statistics of two fracture modes , 1962 .

[4]  M. B. McNeil,et al.  The Fracture of Surface Coatings on a Strained Substrate , 1969 .

[5]  R. Doremus,et al.  Fracture statistics: A comparison of the normal, Weibull, and Type I extreme value distributions , 1983 .

[6]  D. E. Grady,et al.  Fragmentation of the universe , 1983 .

[7]  Fractured but not fractal: Fragmentation of the gulf of suez basement , 1989 .

[8]  N. Pacia,et al.  Étude statistique de la fissuration des revêtements I: Théorie , 1989 .

[9]  D. C. Agrawal,et al.  Measurement of the ultimate shear strength of a metal-ceramic interface , 1989 .

[10]  A. Evans,et al.  The cracking and decohesion of thin films on ductile substrates , 1989 .

[11]  Edward Sacher,et al.  Metallization of polymers , 1990 .

[12]  H. Wagner,et al.  Interpretation of the fragmentation phenomenon in single‐filament composite experiments , 1990 .

[13]  William A. Curtin,et al.  Exact theory of fibre fragmentation in a single-filament composite , 1991 .

[14]  Z. Suo,et al.  Mixed mode cracking in layered materials , 1991 .

[15]  Scher,et al.  Algebraic scaling of material strength. , 1992, Physical review. B, Condensed matter.

[16]  M. Thouless,et al.  Cracking of brittle films on elastic substrates , 1992 .

[17]  K. Knowles,et al.  The One‐Dimensional Car Parking Problem and Its Application to the Distribution of Spacings between Matrix Cracks in Unidirectional Fiber‐Reinforced Brittle Materials , 1992 .

[18]  J. Nairn,et al.  A fracture mechanics analysis of multiple cracking in coatings , 1992 .

[19]  Roux,et al.  Model for surface cracking. , 1993, Physical review. B, Condensed matter.

[20]  I. Sokolov,et al.  Statistical Model for Surface Fracture , 1993 .

[21]  J. Andersons,et al.  Fiber and interface strength distribution studies with the single-fiber composite test , 1993 .

[22]  P. Mulheran Crack networks in thin films , 1993 .

[23]  I. Sokolov,et al.  Analysis of a one-dimensional fracture model , 1993 .

[24]  J. Hilborn,et al.  A method to measure the adhesion of thin glass coatings on polymer films , 1994 .

[25]  I. Sokolov,et al.  Models for cracking of polymer coatings , 1994 .

[26]  Richard L. Smith,et al.  An exact closed form solution for fragmentation of Weibull fibers in a single filament composite with applications to fiber-reinforced ceramics , 1995 .

[27]  STATISTICS AND MICROPHYSICS OF THE FRACTURE OF GLASS , 1996, cond-mat/9606158.

[28]  Sokolov,et al.  Patterns and scaling in surface fragmentation processes. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  A. Pegoretti,et al.  Evaluation of the statistical parameters of a Weibull distribution , 1997 .

[30]  M. Gurvich,et al.  A new statistical distribution for characterizing the random strength of brittle materials , 1997 .

[31]  S. Phoenix,et al.  The single-filament-composite test: a new statistical theory for estimating the interfacial shear strength and Weibull parameters for fiber strength , 1998 .

[32]  N. Takeda,et al.  Cracking phenomena of brittle films in nanostructure composites analysed by a modified shear lag model with residual strain , 1998 .

[33]  C. Hui,et al.  Estimation of interfacial shear strength: an application of a new statistical theory for single fiber composite test , 1999 .

[34]  An analysis of disorder in thin silicon oxide coatings , 1999 .

[35]  I. Sokolov,et al.  Universal scaling and nonlinearity in surface layer fragmentation , 2000 .

[36]  U. A. Handge,et al.  Analysis of brittle coating fragmentation under uniaxial tension for Weibull strength distributions , 2000 .

[37]  Sokolov,et al.  Two scaling domains in multiple cracking phenomena , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  J. Månson,et al.  Biaxial fragmentation of thin silicon oxide coatings on poly(ethylene terephthalate) , 2001 .