Quantitative brain FDG/PET studies using dynamic aortic imaging.

Positron emission tomography (PET) measurements of cerebral glucose utilization using 18F-fluorodeoxyglucose (FDG) are a useful tool in the investigation of localized brain function in normal and disease states. A major impediment to the application of FDG/PET in clinical investigation has been the need for arterial blood sampling to quantify cerebral glucose metabolism (CMRGlc). Qualitative studies, though informative in a variety of clinical settings, are of limited value for research applications and do not utilize the inherent quantitative nature of PET. We present a novel PET technique employing a whole-body PET tomograph with abdominal aortic imaging from 0 to 30 min as an alternative to arterial blood sampling to obtain the input function for cerebral metabolic rate calculations. Two or three arterial samples taken during the 10-45 min period were used to scale and extend the blood curve and the brain was imaged from 35-55 min post-injection. We performed 12 studies in which both arterial blood sampling and aortic scans were obtained. We found the correlation of global metabolic rates (GMR) when comparing the two techniques to be extremely high (R2 = 0.99). This suggests that the use of dynamic aortic imaging is less invasive and a viable alternative to arterial blood sampling in quantitative FDG/PET imaging.

[1]  E. Hoffman,et al.  Tomographic measurement of local cerebral glucose metabolic rate in humans with (F‐18)2‐fluoro‐2‐deoxy‐D‐glucose: Validation of method , 1979, Annals of neurology.

[2]  V. Dhawan,et al.  A new approach to the measurement of resolution and sampling on a positron emission tomograph , 1990 .

[3]  D A Rottenberg,et al.  Effect of blood curve smearing on the accuracy of parameter estimates obtained for 82Rb/PET studies of blood-brain barrier permeability. , 1988, Physics in medicine and biology.

[4]  C S Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  T. Momose,et al.  Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  T Jones,et al.  In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas , 1983, Annals of neurology.

[7]  E. Hoffman,et al.  Validation of PET-acquired input functions for cardiac studies. , 1988, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  V. Dhawan,et al.  Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. , 1993, Radiology.

[9]  E. Hoffman,et al.  Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[10]  Alan C. Evans,et al.  Effect of selecting a fixed dephosphorylation rate on the estimation of rate constants and rCMRGlu from dynamic [18F] fluorodeoxyglucose/PET data. , 1989, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  K J Kearfott,et al.  A new headholder for PET, CT, and NMR imaging. , 1984, Journal of computer assisted tomography.

[12]  David Eidelberg,et al.  Superpett 3000 time-of-flight PET tomograph: optimization of factors affecting quantitation , 1993 .

[13]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.