Testing of exponentially large codes, by a new extension to Weil bound for character sums

In this work we consider linear codes which are locally testable in a sublinear number of queries. We give the first general family of locally testable codes of exponential size. Previous results of this form were known only for codes of quasi-polynomial size (e.g. Reed-Muller codes). We accomplish this by showing that any affine invariant code C over Fpn of size p Ω(n) is locally testable using poly(logp |C|/n) queries. Previous general result for affine invariant codes were known only for sparse codes, i.e. codes of size p. The main new ingredients used in our proof are a new extension of the Weil bound for character sums, and a Fourier-analytic approach for estimating the weight distribution of affine invariant codes. ∗Research supported in part by a Koshland Fellowship. †Research supported by the Israel Science Foundation (grant 1300/05).

[1]  Atri Rudra,et al.  Testing Low-Degree Polynomials over Prime Fields , 2004, FOCS.

[2]  Emanuele Viola,et al.  The Sum of D Small-Bias Generators Fools Polynomials of Degree D , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[3]  Or Meir,et al.  Combinatorial construction of locally testable codes , 2008, SIAM J. Comput..

[4]  Eli Ben-Sasson,et al.  Simple PCPs with poly-log rate and query complexity , 2005, STOC '05.

[5]  Jean Bourgain,et al.  Mordell's exponential sum estimate revisited , 2005 .

[6]  Eli Ben-Sasson,et al.  Limits on the Rate of Locally Testable Affine-Invariant Codes , 2011, APPROX-RANDOM.

[7]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[8]  Shachar Lovett,et al.  Weight Distribution and List-Decoding Size of Reed–Muller Codes , 2012, IEEE Transactions on Information Theory.

[9]  Shachar Lovett,et al.  The List-Decoding Size of Reed-Muller Codes , 2008, Electron. Colloquium Comput. Complex..

[10]  Oded Goldreich,et al.  Locally testable codes and PCPs of almost-linear length , 2006, JACM.

[11]  Madhu Sudan,et al.  Sparse Random Linear Codes are Locally Decodable and Testable , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[12]  A. Weil Sur les courbes algébriques et les variétés qui s'en déduisent , 1948 .

[13]  Simon Litsyn,et al.  Almost orthogonal linear codes are locally testable , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[14]  Carsten Lund,et al.  Non-deterministic exponential time has two-prover interactive protocols , 2005, computational complexity.

[15]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[16]  Madhu Sudan,et al.  Algebraic property testing: the role of invariance , 2008, Electron. Colloquium Comput. Complex..

[17]  Madhu Sudan,et al.  Improved Low-Degree Testing and its Applications , 1997, STOC '97.

[18]  Dana Ron,et al.  Testing Polynomials over General Fields , 2006, SIAM J. Comput..

[19]  Eli Ben-Sasson,et al.  Randomness-efficient low degree tests and short PCPs via epsilon-biased sets , 2003, STOC '03.

[20]  Shachar Lovett,et al.  Unconditional pseudorandom generators for low degree polynomials , 2008, Theory Comput..

[21]  Garrett Birkhoff,et al.  A survey of modern algebra , 1942 .

[22]  Emanuele Viola,et al.  Pseudorandom Bits for Polynomials , 2010, SIAM J. Comput..

[23]  P. Deligne,et al.  Applications de la formule des traces aux sommes trigonométrigues , 1977 .

[24]  Or Meir Combinatorial Construction of Locally Testable Codes , 2009, SIAM J. Comput..

[25]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[26]  L. Carlitz,et al.  Bounds for exponential sums , 1957 .

[27]  Noga Alon,et al.  Testing Low-Degree Polynomials over GF(2( , 2003, RANDOM-APPROX.

[28]  Shubhangi Saraf,et al.  Local list-decoding and testing of random linear codes from high error , 2010, STOC '10.