Modeling Emotions with Social Tags

We present an emotion model based on social tags, which is built upon an automatically generated lexicon that describes emotions by means of synonym and antonym terms. Using this model we develop a number of methods that transform social tag-based item profiles into emotion-oriented item profiles. We show that the model’s representation of a number of basic emotions is in accordance with the well known psychological circumplex model of affect, and we report results from a user study that show a high precision of our methods to infer the emotions evoked by items in the movie and music domains.