Fiber optic system for rapid analysis of amplified DNA fragments

We have developed a fiber optic sensor for rapid and direct analysis of PCR-amplified DNA fragments with minimal sample processing and real-time data readout. To accomplish this, a novel DNA-recognition system was built onto the surface of fused silica fibers. DNA fragments, labeled with a fluorophore during amplification, are bound to and detected at the fiber surface by means of evanescent wave excitation/emission. Excess unincorporated fluorescent single-stranded oligonucleotide PCR primers make only a small contribution to the signal, as the modified fiber surface only efficiently binds double-stranded DNA with the proper PCR-incorporated terminal nucleotide sequence (5'-ATGACTCAT-3'). The surface- bound double-stranded DNA recognition element utilizes a genetically engineered dimeric sequence-specific DNA binding protein. Self-assembly into the proper conformation for binding DNA occurs by means of specific interactions of the active dimer with the Fc domains of a layer of IgG molecules (antibodies) covalently attached directly to the fiber surface. The modified fiber surface is regenerated between samples by stripping away bound DNA with high salt concentrations.