Schur complement‐based domain decomposition preconditioners with low‐rank corrections

This paper introduces a robust preconditioner for general sparse symmetric matrices, that is based on low-rank approximations of the Schur complement in a Domain Decomposition (DD) framework. In this "Schur Low Rank" (SLR) preconditioning approach, the coefficient matrix is first decoupled by DD, and then a low-rank correction is exploited to compute an approximate inverse of the Schur complement associated with the interface points. The method avoids explicit formation of the Schur complement matrix. We show the feasibility of this strategy for a model problem, and conduct a detailed spectral analysis for the relationship between the low-rank correction and the quality of the preconditioning. Numerical experiments on general matrices illustrate the robustness and efficiency of the proposed approach.

[1]  Jianlin Xia,et al.  Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..

[2]  Yousef Saad,et al.  Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners , 2015, SIAM J. Matrix Anal. Appl..

[3]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[4]  Vipin Kumar,et al.  A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering , 1998, J. Parallel Distributed Comput..

[5]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[6]  Timothy A. Davis,et al.  Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2) , 2006 .

[7]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[8]  Laura Grigori,et al.  Robust algebraic Schur complement preconditioners based on low rank corrections , 2014 .

[9]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[10]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[11]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[12]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[13]  Yousef Saad,et al.  GPU-accelerated preconditioned iterative linear solvers , 2013, The Journal of Supercomputing.

[14]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[15]  Sabine Le Borne,et al.  ℋ-matrices for Convection-diffusion Problems with Constant Convection , 2003, Computing.

[16]  Julien Langou,et al.  Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.

[17]  Sabine Le Borne,et al.  H-matrix Preconditioners in Convection-Dominated Problems , 2005, SIAM J. Matrix Anal. Appl..

[18]  Stanly Steinberg,et al.  A Matrix Eigenvalue Problem , 1979 .

[19]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[20]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[21]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[22]  Eric Darve,et al.  An O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O (N \log N)$$\end{document} Fast Direct Solver fo , 2013, Journal of Scientific Computing.

[23]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[24]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[25]  Timothy A. Davis,et al.  Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.

[26]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[27]  M. Rozložník,et al.  The loss of orthogonality in the Gram-Schmidt orthogonalization process , 2005 .

[28]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[29]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[30]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[31]  Na Li,et al.  Crout versions of ILU factorization with pivoting for sparse symmetric matrices. , 2005 .

[32]  Robert A. Walker,et al.  Remark on “Algorithm 506: HQR3 and EXCHNG: Fortran Subroutines for Calculating and Ordering the Eigenvalues of a Real Upper Hessenberg Matrix” , 1982, TOMS.

[33]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[34]  B. Parlett,et al.  The Lanczos algorithm with selective orthogonalization , 1979 .

[35]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[36]  Yousef Saad,et al.  Divide and Conquer Low-Rank Preconditioners for Symmetric Matrices , 2013, SIAM J. Sci. Comput..

[37]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[38]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[39]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[40]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[41]  Eric Darve,et al.  An $$\mathcal O (N \log N)$$O(NlogN)  Fast Direct Solver for Partial Hierarchically Semi-Separable Matrices , 2013 .

[42]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[43]  J. Demmel,et al.  On swapping diagonal blocks in real Schur form , 1993 .

[44]  Yousef Saad,et al.  A Parallel Multistage ILU Factorization Based on a Hierarchical Graph Decomposition , 2006, SIAM J. Sci. Comput..

[45]  J. Mandel Balancing domain decomposition , 1993 .