Schur complement‐based domain decomposition preconditioners with low‐rank corrections
暂无分享,去创建一个
Yousef Saad | Ruipeng Li | Yuanzhe Xi | Y. Saad | Yuanzhe Xi | Ruipeng Li
[1] Jianlin Xia,et al. Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..
[2] Yousef Saad,et al. Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners , 2015, SIAM J. Matrix Anal. Appl..
[3] HackbuschW.. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .
[4] Vipin Kumar,et al. A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering , 1998, J. Parallel Distributed Comput..
[5] Michele Benzi,et al. A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..
[6] Timothy A. Davis,et al. Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2) , 2006 .
[7] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[8] Laura Grigori,et al. Robust algebraic Schur complement preconditioners based on low rank corrections , 2014 .
[9] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[10] Jianlin Xia,et al. On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .
[11] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[12] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[13] Yousef Saad,et al. GPU-accelerated preconditioned iterative linear solvers , 2013, The Journal of Supercomputing.
[14] Timothy A. Davis,et al. Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.
[15] Sabine Le Borne,et al. ℋ-matrices for Convection-diffusion Problems with Constant Convection , 2003, Computing.
[16] Julien Langou,et al. Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.
[17] Sabine Le Borne,et al. H-matrix Preconditioners in Convection-Dominated Problems , 2005, SIAM J. Matrix Anal. Appl..
[18] Stanly Steinberg,et al. A Matrix Eigenvalue Problem , 1979 .
[19] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[20] CLARK R. DOHRMANN,et al. A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..
[21] Xiao-Chuan Cai,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[22] Eric Darve,et al. An O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O (N \log N)$$\end{document} Fast Direct Solver fo , 2013, Journal of Scientific Computing.
[23] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[24] Michele Benzi,et al. A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..
[25] Timothy A. Davis,et al. Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.
[26] B. Engquist,et al. Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.
[27] M. Rozložník,et al. The loss of orthogonality in the Gram-Schmidt orthogonalization process , 2005 .
[28] Jianlin Xia,et al. Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..
[29] Yousef Saad,et al. ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..
[30] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[31] Na Li,et al. Crout versions of ILU factorization with pivoting for sparse symmetric matrices. , 2005 .
[32] Robert A. Walker,et al. Remark on “Algorithm 506: HQR3 and EXCHNG: Fortran Subroutines for Calculating and Ordering the Eigenvalues of a Real Upper Hessenberg Matrix” , 1982, TOMS.
[33] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[34] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[35] Boris N. Khoromskij,et al. A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.
[36] Yousef Saad,et al. Divide and Conquer Low-Rank Preconditioners for Symmetric Matrices , 2013, SIAM J. Sci. Comput..
[37] Marcus J. Grote,et al. Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..
[38] Clark R. Dohrmann,et al. Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..
[39] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[40] Shivkumar Chandrasekaran,et al. A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..
[41] Eric Darve,et al. An $$\mathcal O (N \log N)$$O(NlogN) Fast Direct Solver for Partial Hierarchically Semi-Separable Matrices , 2013 .
[42] Yousef Saad,et al. ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..
[43] J. Demmel,et al. On swapping diagonal blocks in real Schur form , 1993 .
[44] Yousef Saad,et al. A Parallel Multistage ILU Factorization Based on a Hierarchical Graph Decomposition , 2006, SIAM J. Sci. Comput..
[45] J. Mandel. Balancing domain decomposition , 1993 .