Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons

[1]  N. Syed,et al.  Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons , 2016, Scientific Reports.

[2]  J. Yakel,et al.  Heteromeric α7β2 Nicotinic Acetylcholine Receptors in the Brain. , 2016, Trends in pharmacological sciences.

[3]  M. Serrano,et al.  PTEN recruitment controls synaptic and cognitive function in Alzheimer's models , 2016, Nature Neuroscience.

[4]  Jizhou Yan,et al.  Menin localization in cell membrane compartment , 2016, Cancer biology & therapy.

[5]  L. Mucke,et al.  DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice , 2015, Nature Communications.

[6]  M. Emmert-Buck,et al.  Menin Immunoreactivity in Secretory Granules of Human Pancreatic Islet Cells , 2014, Applied immunohistochemistry & molecular morphology : AIMM.

[7]  N. Syed,et al.  Menin: A Tumor Suppressor That Mediates Postsynaptic Receptor Expression and Synaptogenesis between Central Neurons of Lymnaea stagnalis , 2014, PloS one.

[8]  J. Yakel Nicotinic ACh receptors in the hippocampal circuit; functional expression and role in synaptic plasticity , 2014, The Journal of physiology.

[9]  Lionel Moisan,et al.  Conical diffraction illumination opens the way for low phototoxicity super-resolution imaging , 2014, Cell adhesion & migration.

[10]  R. Shen,et al.  Menin regulates spinal glutamate-GABA balance through GAD65 contributing to neuropathic pain , 2014, Pharmacological reports : PR.

[11]  S. Colombo,et al.  Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. , 2013, Biochemical pharmacology.

[12]  X. Hua,et al.  Menin: a scaffold protein that controls gene expression and cell signaling. , 2013, Trends in biochemical sciences.

[13]  Mu-ming Poo,et al.  Neurotrophin regulation of neural circuit development and function , 2012, Nature Reviews Neuroscience.

[14]  X. Shen,et al.  Tumor suppressor menin mediates peripheral nerve injury-induced neuropathic pain through potentiating synaptic plasticity , 2012, Neuroscience.

[15]  N. Syed,et al.  Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-Aspartate receptors , 2012, Molecular Brain.

[16]  D. K. Berg,et al.  Glutamatergic Synapse Formation is Promoted by α7-Containing Nicotinic Acetylcholine Receptors , 2012, The Journal of Neuroscience.

[17]  M. Lei,et al.  The same pocket in menin binds both MLL and JUND but has opposite effects on transcription , 2012, Nature.

[18]  Wolfgang Eberle,et al.  Synaptic dysfunction in hippocampus of transgenic mouse models of Alzheimer's disease: A multi-electrode array study , 2011, Neurobiology of Disease.

[19]  Z. Gu,et al.  Timing-Dependent Septal Cholinergic Induction of Dynamic Hippocampal Synaptic Plasticity , 2011, Neuron.

[20]  Hiroshi Mamitsuka,et al.  Calpain Cleavage Prediction Using Multiple Kernel Learning , 2011, PloS one.

[21]  Nolan R. Campbell,et al.  Endogenous Signaling through α7-Containing Nicotinic Receptors Promotes Maturation and Integration of Adult-Born Neurons in the Hippocampus , 2010, The Journal of Neuroscience.

[22]  X. Hua,et al.  Regulation of Cyclin B2 Expression and Cell Cycle G2/M Transition by Menin* , 2010, The Journal of Biological Chemistry.

[23]  Guoqiang Chen,et al.  Early Changes of β-Catenins and Menins in Spinal Cord Dorsal Horn after Peripheral Nerve Injury , 2010, Cellular and Molecular Neurobiology.

[24]  G. Ning,et al.  Nuclear-Cytoplasmic Shuttling of Menin Regulates Nuclear Translocation of β-Catenin , 2009, Molecular and Cellular Biology.

[25]  D. Talmage,et al.  Presynaptic Type III Neuregulin 1 Is Required for Sustained Enhancement of Hippocampal Transmission by Nicotine and for Axonal Targeting of α7 Nicotinic Acetylcholine Receptors , 2008, The Journal of Neuroscience.

[26]  D. Talmage,et al.  Presynaptic type III neuregulin1-ErbB signaling targets alpha7 nicotinic acetylcholine receptors to axons. , 2008, The Journal of general physiology.

[27]  D. Talmage,et al.  Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons , 2008, The Journal of cell biology.

[28]  C. Geula,et al.  Cholinergic Neuronal and Axonal Abnormalities Are Present Early in Aging and in Alzheimer Disease , 2008, Journal of neuropathology and experimental neurology.

[29]  O. Rozenblatt-Rosen,et al.  Phosphorylation of the Menin Tumor Suppressor Protein on Serine 543 and Serine 583 , 2006, Molecular Cancer Research.

[30]  C. Alberini,et al.  MuSK Expressed in the Brain Mediates Cholinergic Responses, Synaptic Plasticity, and Memory Formation , 2006, The Journal of Neuroscience.

[31]  X. Hua,et al.  Tumor suppressor menin: the essential role of nuclear localization signal domains in coordinating gene expression , 2006, Oncogene.

[32]  Matthew Meyerson,et al.  The Menin Tumor Suppressor Protein Is an Essential Oncogenic Cofactor for MLL-Associated Leukemogenesis , 2005, Cell.

[33]  E. Hellström‐Lindahl,et al.  Evidence for functional nicotinic receptors on pancreatic β cells , 2005 .

[34]  J. Eisenach,et al.  Knock down of the α5 nicotinic acetylcholine receptor in spinal nerve-ligated rats alleviates mechanical allodynia , 2005, Pharmacology Biochemistry and Behavior.

[35]  T. Xu,et al.  Hypermutability in a Drosophila model for multiple endocrine neoplasia type 1. , 2004, Human Molecular Genetics.

[36]  G. Feng,et al.  PSD93 Regulates Synaptic Stability at Neuronal Cholinergic Synapses , 2004, The Journal of Neuroscience.

[37]  C. Vercherat,et al.  Functional characterization of a promoter region in the human MEN1 tumor suppressor gene. , 2003, Journal of molecular biology.

[38]  E. Isacoff,et al.  Neurexin mediates the assembly of presynaptic terminals , 2003, Nature Neuroscience.

[39]  J. S. Coggan,et al.  PDZ-Containing Proteins Provide a Functional Postsynaptic Scaffold for Nicotinic Receptors in Neurons , 2003, Neuron.

[40]  G. Horgan,et al.  Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR , 2002 .

[41]  A. Smit,et al.  Synapse Formation between Central Neurons Requires Postsynaptic Expression of the MEN1 Tumor Suppressor Gene , 2001, The Journal of Neuroscience.

[42]  A. Villa,et al.  Agrin Controls Synaptic Differentiation in Hippocampal Neurons , 2000, The Journal of Neuroscience.

[43]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[44]  G. Lenoir,et al.  Expression analysis of endogenous menin, the product of the multiple endocrine neoplasia type 1 gene, in cell lines and human tissues , 2000, International journal of cancer.

[45]  A. Nordberg,et al.  Decreased Protein Levels of Nicotinic Receptor Subunits in the Hippocampus and Temporal Cortex of Patients with Alzheimer’s Disease , 2000, Journal of neurochemistry.

[46]  D. K. Berg,et al.  Rapsyn Variants in Ciliary Ganglia and Their Possible Effects on Clustering of Nicotinic Receptors , 1999, Journal of neurochemistry.

[47]  F. Collins,et al.  Isolation, genomic organization, and expression analysis of Men1, the murine homolog of the MEN1 gene , 1999, Mammalian Genome.

[48]  G. Crabtree,et al.  Heteromeric Complexes of α5 and/or α7 Subunits: Effects of Calcium and Potential Role in Nicotine‐Induced Presynaptic Facilitation , 1999 .

[49]  C. Larsson,et al.  Characterization of the mouse Men1 gene and its expression during development , 1998, Oncogene.

[50]  J. A. Dani,et al.  Nicotinic Stimulation Produces Multiple Forms of Increased Glutamatergic Synaptic Transmission , 1998, The Journal of Neuroscience.

[51]  L. Role,et al.  Functional contribution of the α7 subunit to multiple subtypes of nicotinic receptors in embryonic chick sympathetic neurones , 1998, The Journal of physiology.

[52]  J. Sanes,et al.  Rapsyn Clusters Neuronal Acetylcholine Receptors But Is Inessential for Formation of an Interneuronal Cholinergic Synapse , 1998, The Journal of Neuroscience.

[53]  F. Collins,et al.  Menin, the product of the MEN1 gene, is a nuclear protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  L. Role,et al.  A Cysteine-Rich Isoform of Neuregulin Controls the Level of Expression of Neuronal Nicotinic Receptor Channels during Synaptogenesis , 1998, Neuron.

[55]  Y Wang,et al.  Positional cloning of the gene for multiple endocrine neoplasia-type 1. , 1997, Science.

[56]  Richard L. Huganir,et al.  GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors , 1997, Nature.

[57]  S. Wonnacott,et al.  Presynaptic nicotinic ACh receptors , 1997, Trends in Neurosciences.

[58]  R. Gray,et al.  Hippocampal synaptic transmission enhanced by low concentrations of nicotine , 1996, Nature.

[59]  K. Keyser,et al.  Assembly of Human Neuronal Nicotinic Receptor α5 Subunits with α3, β2, and β4 Subunits* , 1996, The Journal of Biological Chemistry.

[60]  A. Karlin,et al.  Functional contributions of α5 subunit to neuronal acetylcholine receptor channels , 1996, Nature.

[61]  L. Role,et al.  Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. , 1995, Science.

[62]  P. Seeburg,et al.  Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. , 1995, Science.

[63]  J. Sanes,et al.  Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice , 1995, Nature.

[64]  P. Dutar,et al.  The septohippocampal pathway: structure and function of a central cholinergic system. , 1995, Physiological reviews.

[65]  D. Bertrand,et al.  Pharmacological properties of the homomeric α7 receptor , 1992, Neuroscience Letters.

[66]  D. Bertrand,et al.  A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX , 1990, Neuron.

[67]  L. Swanson,et al.  The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (α 5) in the rat central nervous system , 1990, Brain Research.

[68]  S. Heinemann,et al.  Alpha 3, alpha 5, and beta 4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. , 1990, The Journal of biological chemistry.

[69]  P. Davies,et al.  SELECTIVE LOSS OF CENTRAL CHOLINERGIC NEURONS IN ALZHEIMER'S DISEASE , 1976, The Lancet.

[70]  E. Hellström‐Lindahl,et al.  Evidence for functional nicotinic receptors on pancreatic beta cells. , 2005, Metabolism: clinical and experimental.

[71]  R. Huganir,et al.  Clustering of AMPA Receptors by the Synaptic PDZ Domain–Containing Protein PICK1 , 1999, Neuron.

[72]  J. Sanes,et al.  Development of the vertebrate neuromuscular junction. , 1999, Annual review of neuroscience.

[73]  G. Crabtree,et al.  Heteromeric complexes of alpha 5 and/or alpha 7 subunits. Effects of calcium and potential role in nicotine-induced presynaptic facilitation. , 1999, Annals of the New York Academy of Sciences.

[74]  D. Bertrand,et al.  Pharmacological properties of the homomeric alpha 7 receptor. , 1992, Neuroscience letters.

[75]  D. Bertrand,et al.  A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. , 1990, Neuron.

[76]  A. Nappi,et al.  Alzheimer ' s Disease : Cell-Specific Pathology Isolates the Hippocampal Formation , 2022 .