Ultrasensitive two-mode interferometry with single-mode number squeezing.

A major challenge of the phase estimation problem is the engineering of high-intensity entangled probe states. The goal is to significantly enhance above the shot-noise limit the sensitivity of two-mode interferometers. Here we show that this can be achieved by squeezing in input, and then measuring in output, the population fluctuations of a single mode. The second input mode can be left as an arbitrary nonvacuum (e.g., a bright coherent) state. This two-mode state belongs to a novel class of particle-entangled states which are not spin squeezed. Already a 2.4 db gain above shot noise can be obtained when just a single-particle Fock state is injected into the empty input port of a classical interferometer configuration. Higher gains, up to the Heisenberg limit, can be reached with squeezed states of a larger number of particles. We finally study the robustness of this protocol with respect to detection noise.