Large deviations for a reaction diffusion model

SummaryWe obtain large deviation estimates for the empirical measure of a class of interacting particle systems. These consist of a superposition of Glauber and Kawasaki dynamics and are described, in the hydrodynamic limit, by a reaction diffusion equation. We extend results of Kipnis, Olla and Varadhan for the symmetric exclusion process, and provide an approximation scheme for the rate functional. Some physical implications of our results are briefly indicated.