Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors.

A novel Au@MnO2 supercapacitor is presented. The sophisticated core-shell architecture combining an Au nanomesh core with a MnO2 shell on a flexible polymeric substrate is demonstrated as an electrode for high performance transparent flexible supercapacitors (TFSCs). Due to their unique structure, high areal/gravimetric capacitance and rate capability for TFSCs are achieved.

[1]  Yi Cui,et al.  Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires , 2013, Nature Communications.

[2]  J. Yi,et al.  Transparent and ultra-bendable all-solid-state supercapacitors without percolation problems , 2013 .

[3]  J. Post,et al.  Manganese oxide minerals: crystal structures and economic and environmental significance. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.

[5]  Paolo Vavassori,et al.  Flexible and stretchable polymers with embedded magnetic nanostructures. , 2013, Advanced materials.

[6]  Hao Jiang,et al.  Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes , 2012, Advanced materials.

[7]  Zhongwei Chen,et al.  Ultrathin, transparent, and flexible graphene films for supercapacitor application , 2010 .

[8]  Zhiqiang Niu,et al.  All‐Solid‐State Flexible Ultrathin Micro‐Supercapacitors Based on Graphene , 2013, Advanced materials.

[9]  R. Penner,et al.  Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Capacity, High Rate, and High Cyclability Hybrid Electrical Energy Storage , 2012 .

[10]  D. Wei,et al.  Transparent, flexible and solid-state supercapacitors based on room temperature ionic liquid gel , 2009 .

[11]  Thomas M. Higgins,et al.  Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. , 2012, ACS nano.

[12]  Qiang Zhang,et al.  A Three‐Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors , 2010, Advanced materials.

[13]  Feiyu Kang,et al.  Renewing Functionalized Graphene as Electrodes for High‐Performance Supercapacitors , 2012, Advanced materials.

[14]  Lei Wang,et al.  Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[15]  L. Zhi,et al.  Rod‐Coating: Towards Large‐Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens , 2012, Advanced materials.

[16]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[17]  S. Thiberge,et al.  Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion , 2013, Nature Communications.

[18]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[19]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[20]  J. Gan,et al.  RuO2/MnO2 core-shell nanorods for supercapacitors , 2013 .

[21]  Zhenbo Cai,et al.  Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor , 2013, Scientific Reports.

[22]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[23]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[24]  Guanghui Cheng,et al.  Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. , 2011, Nanoscale.

[25]  J. Coleman,et al.  Flexible, transparent dielectric capacitors with nanostructured electrodes , 2012 .

[26]  Kang L. Wang,et al.  Metallic nanomesh electrodes with controllable optical properties for organic solar cells , 2012 .

[27]  Tao Chen,et al.  Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. , 2014, ACS nano.

[28]  Jiangtian Li,et al.  Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array , 2013, Nature Communications.

[29]  Yunhua Zhang,et al.  Paper-based transparent flexible thin film supercapacitors. , 2013, Nanoscale.

[30]  Ran Liu,et al.  MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. , 2008, Journal of the American Chemical Society.

[31]  M. Yun,et al.  Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. , 2011, Nano letters.

[32]  Hongwei Zhu,et al.  Synthesis of layered birnessite-type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors , 2011 .

[33]  Yi Cui,et al.  A transparent electrode based on a metal nanotrough network. , 2013, Nature nanotechnology.

[34]  Haegyeom Kim,et al.  Recent progress on flexible lithium rechargeable batteries , 2014 .

[35]  P. Mulvaney,et al.  Transparent metal electrodes from ordered nanosphere arrays , 2013 .

[36]  Pulickel M. Ajayan,et al.  Transparent, flexible supercapacitors from nano-engineered carbon films , 2012, Scientific Reports.

[37]  Ursula Ebels,et al.  Large-scale, 2D arrays of magnetic nanoparticles , 2003 .

[38]  Yi Cui,et al.  Transparent lithium-ion batteries , 2011, Proceedings of the National Academy of Sciences.