Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells.

[1]  S. Dudek,et al.  Pulmonary Endothelial Cell Barrier Enhancement by Sphingosine 1-Phosphate , 2004, Journal of Biological Chemistry.

[2]  A. Ridley,et al.  GIT1 Mediates Thrombin Signaling in Endothelial Cells: Role in Turnover of RhoA-Type Focal Adhesions , 2004, Circulation research.

[3]  Ivar Giaever,et al.  Electrical Impedance of Cultured Endothelium Under Fluid Flow , 2001, Annals of Biomedical Engineering.

[4]  Kozo Kaibuchi,et al.  Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. , 2004, Microvascular research.

[5]  A. Verin,et al.  Involvement of site‐specific FAK phosphorylation in sphingosine‐1 phosphate‐ and thrombin‐induced focal adhesion remodeling: role of Src and GIT , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  S. Ye,et al.  Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. , 2003, American journal of physiology. Lung cellular and molecular physiology.

[7]  Miguel A del Pozo,et al.  Localized Cdc42 Activation, Detected Using a Novel Assay, Mediates Microtubule Organizing Center Positioning in Endothelial Cells in Response to Fluid Shear Stress* , 2003, Journal of Biological Chemistry.

[8]  J. Parsons,et al.  Focal adhesion kinase: the first ten years , 2003, Journal of Cell Science.

[9]  J. Garcia,et al.  S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. , 2003, Journal of applied physiology.

[10]  S. Chien,et al.  Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression , 2002, The EMBO journal.

[11]  Benjamin Geiger,et al.  Exploring the Neighborhood Adhesion-Coupled Cell Mechanosensors , 2002, Cell.

[12]  C. Turner,et al.  Roles for the tubulin- and PTP-PEST-binding paxillin LIM domains in cell adhesion and motility. , 2002, The international journal of biochemistry & cell biology.

[13]  E. Van Obberghen-Schilling,et al.  Distinct signals via Rho GTPases and Src drive shape changes by thrombin and sphingosine-1-phosphate in endothelial cells. , 2002, Journal of cell science.

[14]  C. Turner,et al.  Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. , 2002, Molecular biology of the cell.

[15]  M. Crow,et al.  Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. , 2002, American journal of respiratory cell and molecular biology.

[16]  A. Ridley,et al.  Rho family proteins: coordinating cell responses. , 2001, Trends in cell biology.

[17]  M. Brown,et al.  Paxillin-ARF GAP signaling and the cytoskeleton. , 2001, Current opinion in cell biology.

[18]  S. Weed,et al.  Cortactin: coupling membrane dynamics to cortical actin assembly , 2001, Oncogene.

[19]  S. Dudek,et al.  Cytoskeletal regulation of pulmonary vascular permeability. , 2001, Journal of applied physiology.

[20]  Shu Chien,et al.  Activation of integrins in endothelial cells by fluid shear stress mediates Rho‐dependent cytoskeletal alignment , 2001, The EMBO journal.

[21]  A. Verin,et al.  Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. , 2001, The Journal of clinical investigation.

[22]  M. Schaller Biochemical signals and biological responses elicited by the focal adhesion kinase. , 2001, Biochimica et biophysica acta.

[23]  C. Turner,et al.  JCB Article , 2001 .

[24]  M. Crow,et al.  Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. , 2001, American journal of physiology. Lung cellular and molecular physiology.

[25]  Peijun Zhang,et al.  Activation of Arp2/3 complex-mediated actin polymerization by cortactin , 2001, Nature Cell Biology.

[26]  G. Amerongen,et al.  Cytoskeletal Effects of Rho-Like Small Guanine Nucleotide–Binding Proteins in the Vascular System , 2001 .

[27]  A. Tsubouchi,et al.  An ADP-ribosylation factor GTPase-activating protein Git2-short/KIAA0148 is involved in subcellular localization of paxillin and actin cytoskeletal organization. , 2001, Molecular biology of the cell.

[28]  M. Hendrix,et al.  Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. , 2001, American journal of physiology. Heart and circulatory physiology.

[29]  M. Hendrix,et al.  Erratum: Mechanisms of coronary angiogenesis on response to stretch: Role of VEGF and TGF-β (American Journal of Physiology - Heart and Circulatory Physiology (February 2001) 280 (H909-H917)) , 2001 .

[30]  D. Vestweber,et al.  Endothelial Barrier Function under Laminar Fluid Shear Stress , 2000, Laboratory Investigation.

[31]  K. Burridge,et al.  Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. , 2000, Experimental cell research.

[32]  K. Naruse,et al.  Stretch-induced morphological changes of human endothelial cells depend on the intracellular level of Ca2+ rather than of cAMP. , 2000, Life sciences.

[33]  C Mrowietz,et al.  Quantitative morphodynamics of endothelial cells within confluent cultures in response to fluid shear stress. , 2000, Biophysical journal.

[34]  L. Lim,et al.  Coupling of PAK-Interacting Exchange Factor PIX to GIT1 Promotes Focal Complex Disassembly , 2000, Molecular and Cellular Biology.

[35]  M. Ishida,et al.  Agonist-stimulated cytoskeletal reorganization and signal transduction at focal adhesions in vascular smooth muscle cells require c-Src. , 1999, The Journal of clinical investigation.

[36]  P. Aspenström Effectors for the Rho GTPases. , 1999, Current opinion in cell biology.

[37]  V. V. van Hinsbergh,et al.  Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. , 1998, Circulation research.

[38]  C. Turner Molecules in focus Paxillin , 1998 .

[39]  Takako Yamada,et al.  Pp125FAK is required for stretch dependent morphological response of endothelial cells , 1998, Oncogene.

[40]  Takako Yamada,et al.  Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. , 1998, American journal of physiology. Heart and circulatory physiology.

[41]  L. Silengo,et al.  p125FAK tyrosine phosphorylation and focal adhesion assembly: studies with phosphotyrosine phosphatase inhibitors. , 1995, Experimental cell research.

[42]  C. Turner,et al.  Characterization of Tyrosine Phosphorylation of Paxillin in Vitro by Focal Adhesion Kinase (*) , 1995, The Journal of Biological Chemistry.

[43]  J. Parsons,et al.  pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk , 1995, Molecular and cellular biology.

[44]  K. Kaibuchi,et al.  Small GTP-binding proteins. , 1992, International review of cytology.

[45]  G. N. Antonova,et al.  Mechano-chemical control of human endothelium orientation and size , 1989, The Journal of cell biology.