Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

Abstract A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1′-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

[1]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[2]  Jung-Ki Park,et al.  Preparation and electrochemcial characteristics of plasticized polymer electrolytes based upon a P(VdF-co-HFP)/PVAc blend , 2001 .

[3]  Masahiro Ichimura,et al.  Lithium electrode cycleability and morphology dependence on current density , 1993 .

[4]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[5]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[6]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[7]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[8]  Tao Zhang,et al.  Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li , 2010 .

[9]  T. Homma,et al.  In Situ Observation of Dendrite Growth of Electrodeposited Li Metal , 2010 .

[10]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[11]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[12]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[13]  W. Henderson,et al.  Phase Behavior and Crystalline Phases of Ionic Liquid-Lithium Salt Mixtures with 1-Alkyl-3-methylimidazolium Salts† , 2010 .

[14]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[15]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[16]  Ruoshi Li,et al.  Novel composite polymer electrolyte for lithium air batteries , 2010 .

[17]  Jun Zhang,et al.  Synthesis of a kind of geminal imidazolium ionic liquid with long aliphatic chains , 2007 .

[18]  Noboru Oyama,et al.  Inhibition effects of polyacrylonitrile gel electrolytes on lithium dendrite formation , 1999 .

[19]  Hiroyuki Ohno,et al.  Progress in Ionic Liquids for Electrochemical Reaction Matrices , 2008 .

[20]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[21]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[22]  R. Morris,et al.  1-Alkyl-3-methyl Imidazolium Bromide Ionic Liquids in the Ionothermal Synthesis of Aluminium Phosphate Molecular Sieves , 2006 .

[23]  Kang Xu,et al.  LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation , 2002 .