Status of electrical tomography in industrial applications

The paper surveys the status of electrical tomography for industrial applications. For the present purposes this is considered to include “low” excitation frequencies, up to about 1 MHz, comprising Resistance (ERT), Capacitance (ECT), Inductance (EMT) and Impedance (EIT) modalities. Introductory background material is followed by comparisons between the instruments that have emerged. Data processing is considered with emphasis on the trade-offs that are necessary in implementing algorithms for reconstructing images. Recent applications are tabulated and case studies are presented for six contrasting areas that illustrate significant progress towards industrial benefit. Some comparison is made with applications to medical tomography and a number of issues are identified for future research.

[1]  Weng Wah Loh,et al.  Using ERT for Multi-Phase Flow Monitioring , 1999 .

[2]  M. Young,et al.  Development of a variable density flowmeter for an industrial application using tomographic imaging , 1996 .

[3]  Leon Kaufman,et al.  A general algorithm for oblique image reconstruction , 1990, IEEE Computer Graphics and Applications.

[4]  Jari P. Kaipio,et al.  An electrical impedance tomography measurement system for experimental use , 1996 .

[5]  Malcolm Byars,et al.  Testing of the failure of a solid rocket propellant with tomography methods , 2000 .

[6]  Ø. Isaksen,et al.  A new recontruction algorithm for use with capacitance-based tomography , 1994 .

[7]  Mark A. Bennett,et al.  Application of capacitance electrical tomography for on-line and off-line analysis of flow pattern in horizontal pipeline of pneumatic conveyer , 2000 .

[8]  Wuqiang Yang,et al.  Hardware design of electrical capacitance tomography systems , 1996 .

[9]  R H Smallwood,et al.  Mk3.5: a modular, multi-frequency successor to the Mk3a EIS/EIT system. , 2001, Physiological measurement.

[10]  Tomasz Dyakowski,et al.  Detecting filter-cake pathologies in solid–liquid filtration: semi-tech scale demonstrations using electrical resistance tomography (ERT) , 2000 .

[11]  Anthony J. Peyton,et al.  Development of Electromagnetic Tomography (EMT) for Industrial Applications. Part 1: Sensor Design and Instrumentation , 1999 .

[12]  Tomasz Dyakowski,et al.  Process tomography - the state of the art , 1998 .

[13]  K. Boone,et al.  Imaging with electricity: report of the European Concerted Action on Impedance Tomography. , 1997, Journal of medical engineering & technology.

[14]  B. T. Hjertaker,et al.  A dual sensor flow imaging tomographic system , 1996 .

[15]  R. E. Beissner,et al.  Pulsed Eddy Current Method: an Overview , 1999 .

[16]  Eddy Current Tomography for Metal Solidification Imaging , 1999 .

[17]  Xiaodong Jia,et al.  Analysis and flow regime identification of bubble column dynamics , 1999 .

[18]  R. F. Mudde,et al.  A Fast Active Differentiator Capacitance Transducer for Electrical Capacitance Tomography , 1999 .

[19]  Willis J. Tompkins,et al.  Comparing Reconstruction Algorithms for Electrical Impedance Tomography , 1987, IEEE Transactions on Biomedical Engineering.

[20]  P. Record,et al.  Single-plane multifrequency electrical impedance instrumentation. , 1994, Physiological measurement.

[21]  C.S. Koukourlis,et al.  A 32-electrode data collection system for electrical impedance tomography , 1995, IEEE Transactions on Biomedical Engineering.

[22]  Tom Dyakowski,et al.  Imaging nylon polymerisation processes by applying electrical tomography , 2000 .

[23]  M. Wang,et al.  Modelling and Mapping Electrical Resistance Changes Due to Hearth Erosion in a 'Cold' Model of a Blast Furnace , 1999 .

[24]  Xiaodong Jia,et al.  Industrial Monitoring of Hydrocyclone Operation using Electrical Resistance Tomography , 1999 .

[25]  A Korjenevsky,et al.  Magnetic induction tomography: experimental realization. , 2000, Physiological measurement.

[26]  Andrew Binley,et al.  Detecting Leaks from Waste Storage Ponds using Electrical Tomographic Methods , 1999 .

[27]  R. Pallàs-Areny,et al.  Leakage Detection in Buried Pipes by Electrical Resistance Imaging , 1999 .

[28]  G.J. Saulnier,et al.  ACT3: a high-speed, high-precision electrical impedance tomograph , 1991, IEEE Transactions on Biomedical Engineering.

[29]  P. Williams,et al.  Hardware implementation of RAM-based neural networks for tomographic data processing , 1999 .

[30]  Robert West,et al.  Parametric modelling in industrial process tomography , 2000 .

[31]  C. M. van den Bleek,et al.  Image reconstruction of an electrical capacitance tomography system using an artificial neural network , 1999 .

[32]  N. J. Bailey,et al.  Neural network for pattern association in electrical capacitance tomography , 1994 .

[33]  Martin Schweiger,et al.  Electrical Impedance and Diffuse Optical Tomography Reconstruction Software , 1999 .

[34]  Ø. Isaksen,et al.  A new reconstruction algorithm for use with capacitance-based process tomography , 1994 .

[35]  Mark A. Bennett,et al.  Measurement of bulk particulates on belt conveyor using dielectric tomography , 2000 .

[36]  David M. Scott,et al.  ECT Studies of Bead Fluidization in Vertical Mills , 1999 .

[37]  G. E. Fasching,et al.  A capacitive system for three‐dimensional imaging of fluidized beds , 1991 .

[38]  Information Retrieval by Electrical Capacitance Tomography: Evaluation of an Iterative Algorithm and the Importance of Boundary Conditions , 1999 .

[39]  R. C. Waterfall,et al.  Monitoring Flame Position and Stability in Combustion Cans Using ECT , 1999 .

[40]  Wuqiang Yang,et al.  An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography , 1999 .

[41]  A Ramirez,et al.  The role of electrical resistance tomography in the U.S. nuclear waste site characterization program , 1998 .

[42]  F. J. Dickin,et al.  Tomographic imaging of industrial process equipment : techniques and applications , 1992 .

[43]  R. A. Williams,et al.  Chapter 1 – Introduction to process tomography , 1995 .

[44]  Mi Wang,et al.  Measuring Flowing Foam Density Distributions Using ERT , 1999 .

[45]  F J Lidgey,et al.  Development of a real-time adaptive current tomograph. , 1994, Physiological measurement.

[46]  B. S. Hoyle,et al.  Chapter 14 – Parallel–processing approach using transputers — case studies , 1995 .

[47]  S. Deans The Radon Transform and Some of Its Applications , 1983 .

[48]  A Arko,et al.  Development of Electrical Capacitance Tomography for Solids Mass Flow Measurement and Control of Pneumatic Conveying Systems , 1999 .

[49]  Trevor York Custom silicon for tomographic instrumentation , 1996 .

[50]  Richard A Williams,et al.  Electrical tomography techniques for process engineering applications , 1995 .

[51]  R B White,et al.  Internal Structures in Fluid Beds of Different Scales: An Application of Electrical Capacitance Tomography. , 1999 .

[52]  F. J. Dickin,et al.  Chapter 5 – Impedance sensors — conducting systems , 1995 .

[53]  Manel Gasulla,et al.  2D and 3D Subsurface Resistivity Imaging Using a Constrained Least-Squares Algorithm , 1999 .

[54]  Tomasz Dyakowski,et al.  A behaviour of a catalyst powder flowing down in a dipleg , 2000 .

[55]  B.H. Brown,et al.  A real-time electrical impedance tomography system for clinical use-design and preliminary results , 1995, IEEE Transactions on Biomedical Engineering.

[56]  Mi Wang,et al.  Multimodal process tomography system design , 2001, SPIE Optics East.

[57]  Keith D. Paulsen,et al.  A multichannel continuously selectable multifrequency electrical impedance spectroscopy measurement system , 2000, IEEE Transactions on Biomedical Engineering.