Using reparametrization invariance to define vacuum infinities in string path integrals

[1]  P. Ramond,et al.  A reparametrization-invariant approach to superstring field theory☆ , 1989 .

[2]  A. Tseytlin,et al.  Partition-function representation for the open superstring effective action: . Cancellation of Möbius infinites and derivative corrections to Born-Infeld lagrangian , 1988 .

[3]  Ke-lin Wang,et al.  Elliptic solution for two nonlinear interacting oscillators , 1988 .

[4]  C. Callan,et al.  Loop corrections to superstring equations of motion , 1988 .

[5]  A. Tseytlin,et al.  Generating functional for scattering amplitudes and the effective action in the open superstring theory , 1988 .

[6]  P. Ramond,et al.  A reparametrization-invariant approach to string field theory , 1988 .

[7]  C. Callan,et al.  Loop corrections to conformal invariance for type-I superstrings , 1988 .

[8]  A. Tseytlin Renormalization of Möbius infinities and partition function representation for the string theory effective action , 1988 .

[9]  Yunhai Cai,et al.  Consistency of open superstring theories , 1988 .

[10]  C. Callan,et al.  String loop corrections to beta functions , 1987 .

[11]  C. Callan,et al.  Adding holes and crosscaps to the superstring , 1987 .

[12]  J. Cardy Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories , 1986 .

[13]  E. Fradkin,et al.  Non-linear electrodynamics from quantized strings , 1985 .

[14]  J. Cardy,et al.  Conformal Invariance and Surface Critical Behavior , 1984 .

[15]  L. F. Abbott,et al.  The Background Field Method Beyond One Loop , 1981 .

[16]  Bryce S. DeWitt,et al.  Dynamical theory of groups and fields , 1964 .