A comparison between analytical calculations of the shakedown load by the bipotential approach and step-by-step computations for elastoplastic materials with nonlinear kinematic hardening
暂无分享,去创建一个
[1] D. Weichert,et al. Influence of geometrical nonlinearities on the shakedown of damaged structures , 1998 .
[2] Giulio Maier,et al. Shakedown theory in perfect elastoplasticity with associated and nonassociated flow-laws: A finite element, linear programming approach , 1969 .
[3] B. Nayroles,et al. La notion de sanctuaire d'élasticité et d'adaptation des structures , 1993 .
[4] Dieter Weichert,et al. Inelastic Analysis of Structures under Variable Loads , 2000 .
[5] Carlo Gavarini,et al. Steel Orthotropic Plates under Alternate Loads , 1975 .
[6] J. Chaboche,et al. Mechanics of Solid Materials , 1990 .
[7] John Brand Martin,et al. Plasticity: Fundamentals and General Results , 1975 .
[8] Ernst Melan,et al. Zur Plastizität des räumlichen Kontinuums , 1938 .
[9] G. De Saxce,et al. Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives , 1992 .
[10] D G Moffat,et al. Torispherical drumheads: A limit-pressure and shakedown investigation , 1971 .
[11] G. E. Findlay,et al. Elastic-Plastic Computations as a Basis for Design Charts for Torispherical Pressure Vessel Ends , 1970 .
[12] Jean-Louis Chaboche,et al. On some modifications of kinematic hardening to improve the description of ratchetting effects , 1991 .
[13] Quoc Son Nguyen,et al. On shakedown analysis in hardening plasticity , 2003 .
[14] L. Bousshine,et al. Softening in stress-strain curve for Drucker-Prager non-associated plasticity , 2001 .
[15] E. Procter,et al. Experimental investigation into the elastic/plastic behaviour of isolated nozzles in spherical shells. Part II. Shakedown and plastic analysis. , 1968 .
[16] P. D. Chinh. Plastic collapse of a circular plate under cyclic loads , 2003 .
[17] Lahbib Bousshine,et al. Limit analysis theorems for implicit standard materials: Application to the unilateral contact with dry friction and the non-associated flow rules in soils and rocks , 1998 .
[18] W. T. Koiter. General theorems for elastic plastic solids , 1960 .
[19] W. Fenchel. On Conjugate Convex Functions , 1949, Canadian Journal of Mathematics.
[20] G. Saxcé,et al. Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach , 2001 .
[21] G. Borino. Consistent shakedown theorems for materials with temperature dependent yield functions , 2000 .
[22] Giulio Maier,et al. Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models , 1995 .
[23] Ali Chaaba,et al. A new approach to shakedown analysis for non-standard elastoplastic material by the bipotential , 2003 .
[24] T. Charlton. Progress in Solid Mechanics , 1962, Nature.
[25] J. Moreau,et al. La notion de sur-potentiel et les liaisons unilatérales en élastostatique , 1968 .
[26] C. O. Frederick,et al. A mathematical representation of the multiaxial Bauschinger effect , 2007 .
[27] Alberto Corigliano,et al. Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws , 1995 .
[28] Dieter Weichert,et al. Inelastic behaviour of structures under variable repeated loads : direct analysis methods , 2002 .