Domination parameters in hypertrees and sibling trees

A locating-dominating set (LDS) of a graph $G$ is a dominating set $S$ of $G$ such that for every two vertices $u$ and $v$ in $V(G) \setminus S$, $N(u)\cap S \neq N(v)\cap S$. The locating-domination number $\gamma^{L}(G)$ is the minimum cardinality of a LDS of $G$. Further if $S$ is a total dominating set then $S$ is called a locating-total dominating set. In this paper we determine the domination, total domination, locating-domination and locating-total domination numbers for hypertrees and sibling trees.

[1]  Michael A. Henning,et al.  Locating and total dominating sets in trees , 2006, Discret. Appl. Math..

[2]  Mostafa Blidia,et al.  A characterization of locating-total domination edge critical graphs , 2011, Discuss. Math. Graph Theory.

[3]  Iiro S. Honkala,et al.  On locating-dominating sets in infinite grids , 2006, Eur. J. Comb..

[4]  Carlo H. Séquin,et al.  Hypertree: A Multiprocessor Interconnection Topology , 1981, IEEE Transactions on Computers.

[5]  Sergio R. Canoy,et al.  Locating Total Dominating Sets in the Join, Corona and Composition of Graphs , 2014 .

[6]  Michael A. Henning,et al.  Locating-total domination in graphs , 2012, Discret. Appl. Math..

[7]  Tero Laihonen,et al.  Locating-dominating codes in cycles , 2011, Australas. J Comb..

[8]  Changhong Lu,et al.  Identifying codes and locating-dominating sets on paths and cycles , 2011, Discret. Appl. Math..

[9]  Xue-Gang Chen,et al.  Bounds on the locating-total domination number of a tree , 2011, Discret. Appl. Math..

[10]  Mirka Miller,et al.  A Note on the Locating-Total Domination in Graphs , 2017, Discuss. Math. Graph Theory.

[11]  Ludovít Niepel,et al.  Locating and identifying codes in circulant networks , 2013, Discret. Appl. Math..

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Antoine Lobstein,et al.  Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard , 2003, Theor. Comput. Sci..

[14]  Indra Rajasingh,et al.  Combinatorial Properties of Root-fault Hypertrees☆ , 2015 .

[15]  Peter J. Slater,et al.  Fault-tolerant locating-dominating sets , 2002, Discret. Math..

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Michael A. Henning,et al.  Locating-total domination in claw-free cubic graphs , 2012, Discret. Math..