Dynamic multi-dimensional bin packing

A natural generalization of the classical online bin packing problem is the dynamic bin packing problem introduced by Coffman et al. (1983) [7]. In this formulation, items arrive and depart and the objective is to minimize the maximal number of bins ever used over all times. We study the oriented multi-dimensional dynamic bin packing problem for two dimensions, three dimensions and multiple dimensions. Specifically, we consider dynamic packing of squares and rectangles into unit squares and dynamic packing of three-dimensional cubes and boxes into unit cubes. We also study dynamic d-dimensional hypercube and hyperbox packing. For dynamic d-dimensional box packing we define and analyze the algorithm NFDH for the offline problem and present a dynamic version. This algorithm was studied before for rectangle packing and for square packing and was generalized only for multi-dimensional cubes. We present upper and lower bounds for each of these cases.

[1]  L. Moser,et al.  On packing of squares and cubes , 1968 .

[2]  Prabhakar Raghavan,et al.  Multidimensional on-line bin packing: Algorithms and worst-case analysis , 1989 .

[3]  Prudence W. H. Wong,et al.  Dynamic Bin Packing of Unit Fractions Items , 2005, ICALP.

[4]  D. T. Lee,et al.  A simple on-line bin-packing algorithm , 1985, JACM.

[5]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..

[6]  Prudence W. H. Wong,et al.  On Dynamic Bin Packing: An Improved Lower Bound and Resource Augmentation Analysis , 2008, Algorithmica.

[7]  Yoshiko Wakabayashi,et al.  Cube packing , 2003, Theor. Comput. Sci..

[8]  Rob van Stee,et al.  New bounds for multi-dimensional packing , 2002, SODA '02.

[9]  Alberto Caprara,et al.  Improved approximation algorithms for multidimensional bin packing problems , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[10]  Alberto Caprara,et al.  Packing d-Dimensional Bins in d Stages , 2008, Math. Oper. Res..

[11]  Leah Epstein,et al.  Optimal online bounded space multidimensional packing , 2004, SODA '04.

[12]  Jeffrey D. Ullman,et al.  The performance of a memory allocation algorithm , 1971 .

[13]  Yong Zhou,et al.  Improved Online Hypercube Packing , 2006, WAOA.

[14]  Leah Epstein,et al.  Online square and cube packing , 2005, Acta Informatica.

[15]  Prudence W. H. Wong,et al.  On Dynamic Bin Packing: An Improved Lower Bound and Resource Augmentation Analysis , 2006, COCOON.

[16]  Rob van Stee,et al.  New Bounds for Multidimensional Packing , 2003, Algorithmica.

[17]  Prudence W. H. Wong,et al.  Dynamic bin packing of unit fractions items , 2008, Theor. Comput. Sci..

[18]  Leah Epstein,et al.  Optimal Online Algorithms for Multidimensional Packing Problems , 2005, SIAM J. Comput..

[19]  Rob van Stee,et al.  An approximation algorithm for square packing , 2004, Oper. Res. Lett..

[20]  János Csirik,et al.  An on-line algorithm for multidimensional bin packing , 1993, Oper. Res. Lett..

[21]  José R. Correa,et al.  Bin Packing in Multiple Dimensions: Inapproximability Results and Approximation Schemes , 2006, Math. Oper. Res..

[22]  Yoshiharu Kohayakawa,et al.  Multidimensional Cube Packing , 2004, Algorithmica.

[23]  Edward G. Coffman,et al.  Dynamic Bin Packing , 1983, SIAM J. Comput..

[24]  Robert E. Tarjan,et al.  Performance Bounds for Level-Oriented Two-Dimensional Packing Algorithms , 1980, SIAM J. Comput..

[25]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .