Jamming threshold of dry fine powders.

We report a novel experimental study on the jamming transition of dry fine powders with controlled attractive energy and particle size. Like in attractive colloids dry fine particles experience diffusion-limited clustering in the fluidlike regime. At the jamming threshold fractal clusters crowd in a metastable state at volume fractions depending on attractive energy and close to the volume fraction of hard nonattractive spheres at jamming. Near the phase transition the stress-(volume fraction) relationship can be fitted to a critical-like functional form for a small range of applied stresses sigma approximately (phi-phi(J))(beta) as measured on foams, emulsions, and colloidal systems and predicted by numerical simulations on hard spheres.