An Algorithm to Compute the Möbius Function of the Rotation Lattice of Binary Trees
暂无分享,去创建一个
[1] G. Grätzer. General Lattice Theory , 1978 .
[2] R. Tarjan,et al. Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.
[3] Samuel Huang,et al. Problems of Associativity: A Simple Proof for the Lattice Property of Systems Ordered by a Semi-associative Law , 1972, J. Comb. Theory, Ser. A.
[4] Jean Marcel Pallo,et al. On the Rotation Distance in the Lattice of Binary Trees , 1987, Inf. Process. Lett..
[5] Jean Marcel Pallo,et al. A Distance Metric on Binary Trees Using Lattice-Theoretic Measures , 1990, Inf. Process. Lett..
[6] Dov Tamari,et al. Problèmes d'associativité: Une structure de treillis finis induite par une loi demi-associative , 1967 .
[7] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[8] P. Hall,et al. THE EULERIAN FUNCTIONS OF A GROUP , 1936 .
[9] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[10] B. Monjardet,et al. Finite pseudocomplemented lattices , 1992 .
[11] Curtis Greene,et al. The Möbius Function of a Partially Ordered Set , 1982 .
[12] George Markowsky,et al. The factorization and representation of lattices , 1975 .
[13] Numérisation de documents anciens mathématiques. Informatique théorique et applications : Theoretical informatics and applications. , 1986 .
[14] Jean Marcel Pallo,et al. Enumerating, Ranking and Unranking Binary Trees , 1986, Comput. J..
[15] Robert E. Tarjan,et al. Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.
[16] Jean Marcel Pallo. Some Properties of the Rotation Lattice of Binary Trees , 1988, Comput. J..
[17] Mary Katherine Bennett,et al. Two families of Newman lattices , 1994 .
[18] Jean Marcel Pallo,et al. A-transformation dans les arbres n-aires , 1983, Discret. Math..